Search results
Results from the WOW.Com Content Network
A fundamental solution of the heat equation is a solution that corresponds to the initial condition of an initial point source of heat at a known position. These can be used to find a general solution of the heat equation over certain domains (see, for instance, ( Evans 2010 )).
In thermal engineering, Heisler charts are a graphical analysis tool for the evaluation of heat transfer in transient, one-dimensional conduction. [1] They are a set of two charts per included geometry introduced in 1947 by M. P. Heisler [ 2 ] which were supplemented by a third chart per geometry in 1961 by H. Gröber.
It is possible to envision three-dimensional (3D) graphs showing three thermodynamic quantities. [12] [13] For example, for a single component, a 3D Cartesian coordinate type graph can show temperature (T) on one axis, pressure (p) on a second axis, and specific volume (v) on a third. Such a 3D graph is sometimes called a p–v–T diagram. The ...
As an example, number X11 denotes the Green's function that satisfies the heat equation in the domain (0 < x < L) for boundary conditions of type 1 at both boundaries x = 0 and x = L. Here X denotes the Cartesian coordinate and 11 denotes the type 1 boundary condition at both sides of the body.
This is accomplished by solving heat equations in both regions, subject to given boundary and initial conditions. At the interface between the phases (in the classical problem) the temperature is set to the phase change temperature. To close the mathematical system a further equation, the Stefan condition, is required. This is an energy balance ...
Fundamental solution of the one-dimensional heat equation. Red: time course of (,).Blue: time courses of (,) for two selected points. Interactive version. The most well-known heat kernel is the heat kernel of d-dimensional Euclidean space R d, which has the form of a time-varying Gaussian function, (,,) = / (| |), which is defined for all , and >. [1]
In numerical linear algebra, the alternating-direction implicit (ADI) method is an iterative method used to solve Sylvester matrix equations.It is a popular method for solving the large matrix equations that arise in systems theory and control, [1] and can be formulated to construct solutions in a memory-efficient, factored form.
This article describes how to use a computer to calculate an approximate numerical solution of the discretized equation, in a time-dependent situation. In order to be concrete, this article focuses on heat flow, an important example where the convection–diffusion equation applies. However, the same mathematical analysis works equally well to ...