enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Heat equation - Wikipedia

    en.wikipedia.org/wiki/Heat_equation

    A fundamental solution of the heat equation is a solution that corresponds to the initial condition of an initial point source of heat at a known position. These can be used to find a general solution of the heat equation over certain domains (see, for instance, ( Evans 2010 )).

  3. Stefan problem - Wikipedia

    en.wikipedia.org/wiki/Stefan_problem

    This is accomplished by solving heat equations in both regions, subject to given boundary and initial conditions. At the interface between the phases (in the classical problem) the temperature is set to the phase change temperature. To close the mathematical system a further equation, the Stefan condition, is required. This is an energy balance ...

  4. Green's function number - Wikipedia

    en.wikipedia.org/wiki/Green's_function_number

    As an example, number X11 denotes the Green's function that satisfies the heat equation in the domain (0 < x < L) for boundary conditions of type 1 at both boundaries x = 0 and x = L. Here X denotes the Cartesian coordinate and 11 denotes the type 1 boundary condition at both sides of the body.

  5. Heat kernel - Wikipedia

    en.wikipedia.org/wiki/Heat_kernel

    Fundamental solution of the one-dimensional heat equation. Red: time course of (,).Blue: time courses of (,) for two selected points. Interactive version. The most well-known heat kernel is the heat kernel of d-dimensional Euclidean space R d, which has the form of a time-varying Gaussian function, (,,) = / ⁡ (| |), which is defined for all , and >. [1]

  6. Duhamel's principle - Wikipedia

    en.wikipedia.org/wiki/Duhamel's_principle

    The philosophy underlying Duhamel's principle is that it is possible to go from solutions of the Cauchy problem (or initial value problem) to solutions of the inhomogeneous problem. Consider, for instance, the example of the heat equation modeling the distribution of heat energy u in R n.

  7. Self-similar solution - Wikipedia

    en.wikipedia.org/wiki/Self-similar_solution

    [13] [14] The governing equation when heat conduction is the primary heat transfer mechanism is the one-dimensional energy equation: = where is the material's density, is the material's specific heat capacity, is the material's thermal conductivity.

  8. Transport phenomena - Wikipedia

    en.wikipedia.org/wiki/Transport_phenomena

    The heat and mass analogy allows solutions for mass transfer problems to be obtained from known solutions to heat transfer problems. Its arises from similar non-dimensional governing equations between heat and mass transfer.

  9. FTCS scheme - Wikipedia

    en.wikipedia.org/wiki/FTCS_scheme

    In numerical analysis, the FTCS (forward time-centered space) method is a finite difference method used for numerically solving the heat equation and similar parabolic partial differential equations. [1] It is a first-order method in time, explicit in time, and is conditionally stable when applied to the heat equation.