Search results
Results from the WOW.Com Content Network
Although ERA is intended to replace sidereal time, there is a need to maintain definitions for sidereal time during the transition, and when working with older data and documents. Similarly to mean solar time, every location on Earth has its own local sidereal time (LST), depending on the longitude of the point.
The local hour angle (LHA) of an object in the observer's sky is = or = + where LHA object is the local hour angle of the object, LST is the local sidereal time, is the object's right ascension, GST is Greenwich sidereal time and is the observer's longitude (positive east from the prime meridian). [3]
Animation showing equation of time and analemma path over one year.. The United States Naval Observatory states "the Equation of Time is the difference apparent solar time minus mean solar time", i.e. if the sun is ahead of the clock the sign is positive, and if the clock is ahead of the sun the sign is negative.
Sidereal time is the hour angle of the equinox. However, there are two types: if the mean equinox is used (that which only includes precession), it is called mean sidereal time; if the true equinox is used (the actual location of the equinox at a given instant), it is called apparent sidereal time.
TT differs from Geocentric Coordinate Time (TCG) by a constant rate. Formally it is defined by the equation = +, where TT and TCG are linear counts of SI seconds in Terrestrial Time and Geocentric Coordinate Time respectively, is the constant difference in the rates of the two time scales, and is a constant to resolve the epochs (see below).
Universal time tracks the Earth's rotation in time, which performs one revolution in about 24 hours. The Earth's rotation is uneven, so UT is not linear with respect to atomic time. It is practically proportional to the sidereal time, which is also a direct measure of Earth rotation. The excess revolution time is called length of day (LOD).
[1] [7] By comparing the corrected lunar distance with the tabulated values, the navigator finds the Greenwich time for that observation. Knowing Greenwich time and local time, the navigator can work out longitude. [1] Local time can be determined from a sextant observation of the altitude of the Sun or a star. [8] [9] Then the longitude ...
One sidereal hour (approximately 0.9973 solar hours) later, Earth's rotation will carry the star to the west of the meridian, and its hour angle will be 1 h. When calculating topocentric phenomena, right ascension may be converted into hour angle as an intermediate step.