enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Adaptive histogram equalization - Wikipedia

    en.wikipedia.org/wiki/Adaptive_histogram...

    Adaptive histogram equalization (AHE) is a computer image processing technique used to improve contrast in images. It differs from ordinary histogram equalization in the respect that the adaptive method computes several histograms, each corresponding to a distinct section of the image, and uses them to redistribute the lightness values of the image.

  3. Image histogram - Wikipedia

    en.wikipedia.org/wiki/Image_histogram

    An image histogram is a type of histogram that acts as a graphical representation of the tonal distribution in a digital image. [1] It plots the number of pixels for each tonal value. By looking at the histogram for a specific image a viewer will be able to judge the entire tonal distribution at a glance.

  4. Histogram equalization - Wikipedia

    en.wikipedia.org/wiki/Histogram_equalization

    Histogram equalization will work the best when applied to images with much higher color depth than palette size, like continuous data or 16-bit gray-scale images. There are two ways to think about and implement histogram equalization, either as image change or as palette change.

  5. Histogram matching - Wikipedia

    en.wikipedia.org/wiki/Histogram_matching

    In image processing, histogram matching or histogram specification is the transformation of an image so that its histogram matches a specified histogram. [1] The well-known histogram equalization method is a special case in which the specified histogram is uniformly distributed .

  6. Color histogram - Wikipedia

    en.wikipedia.org/wiki/Color_histogram

    Color histograms are flexible constructs that can be built from images in various color spaces, whether RGB, rg chromaticity or any other color space of any dimension. A histogram of an image is produced first by discretization of the colors in the image into a number of bins, and counting the number of image pixels in each bin.

  7. Histogram - Wikipedia

    en.wikipedia.org/wiki/Histogram

    The data used to construct a histogram are generated via a function m i that counts the number of observations that fall into each of the disjoint categories (known as bins). Thus, if we let n be the total number of observations and k be the total number of bins, the histogram data m i meet the following conditions:

  8. Local binary patterns - Wikipedia

    en.wikipedia.org/wiki/Local_binary_patterns

    Multi-block LBP: the image is divided into many blocks, a LBP histogram is calculated for every block and concatenated as the final histogram. Volume Local Binary Pattern(VLBP): [11] VLBP looks at dynamic texture as a set of volumes in the (X,Y,T) space where X and Y denote the spatial coordinates and T denotes the frame index. The neighborhood ...

  9. Otsu's method - Wikipedia

    en.wikipedia.org/wiki/Otsu's_method

    Otsu's method performs well when the histogram has a bimodal distribution with a deep and sharp valley between the two peaks. [ 6 ] Like all other global thresholding methods, Otsu's method performs badly in case of heavy noise, small objects size, inhomogeneous lighting and larger intra-class than inter-class variance. [ 7 ]