Search results
Results from the WOW.Com Content Network
Adaptive histogram equalization (AHE) is a computer image processing technique used to improve contrast in images. It differs from ordinary histogram equalization in the respect that the adaptive method computes several histograms, each corresponding to a distinct section of the image, and uses them to redistribute the lightness values of the image.
An image histogram is a type of histogram that acts as a graphical representation of the tonal distribution in a digital image. [1] It plots the number of pixels for each tonal value. By looking at the histogram for a specific image a viewer will be able to judge the entire tonal distribution at a glance.
Histogram equalization will work the best when applied to images with much higher color depth than palette size, like continuous data or 16-bit gray-scale images. There are two ways to think about and implement histogram equalization, either as image change or as palette change.
An example of histogram matching. In image processing, histogram matching or histogram specification is the transformation of an image so that its histogram matches a specified histogram. [1] The well-known histogram equalization method is a special case in which the specified histogram is uniformly distributed. [2]
The data used to construct a histogram are generated via a function m i that counts the number of observations that fall into each of the disjoint categories (known as bins). Thus, if we let n be the total number of observations and k be the total number of bins, the histogram data m i meet the following conditions:
In more general fields of data processing, such as digital signal processing, it is referred to as dynamic range expansion. [ 1 ] The purpose of dynamic range expansion in the various applications is usually to bring the image, or other type of signal, into a range that is more familiar or normal to the senses, hence the term normalization.
Multi-block LBP: the image is divided into many blocks, a LBP histogram is calculated for every block and concatenated as the final histogram. Volume Local Binary Pattern(VLBP): [11] VLBP looks at dynamic texture as a set of volumes in the (X,Y,T) space where X and Y denote the spatial coordinates and T denotes the frame index. The neighborhood ...
In image processing, the balanced histogram thresholding method (BHT), [1] is a very simple method used for automatic image thresholding.Like Otsu's Method [2] and the Iterative Selection Thresholding Method, [3] this is a histogram based thresholding method.