Search results
Results from the WOW.Com Content Network
The magnitude of Earth's magnetic field at its surface ranges from 25 to 65 μT (0.25 to 0.65 G). [3] As an approximation, it is represented by a field of a magnetic dipole currently tilted at an angle of about 11° with respect to Earth's rotational axis, as if there were an enormous bar magnet placed at that angle through the center of Earth.
10 −6 –10 −3 G – the magnetic field of Galactic molecular clouds. Typical magnetic field strengths within the interstellar medium of the Milky Way are ~5 μG. 0.25–0.60 G – the Earth's magnetic field at its surface; 4 G – near Jupiter's equator; 25 G – the Earth's magnetic field in its core [4] 50 G – a typical refrigerator magnet
The Earth's magnetic field protects the Earth from the deadly solar wind and has long been used for navigation. It originates in the fluid motions of the outer core. [24] The magnetic field in the upper atmosphere gives rise to the auroras. [26] Earth's dipole axis (pink line) is tilted away from the rotational axis (blue line).
The magnetic field of a magnetic dipole has an inverse cubic dependence in distance, so its order of magnitude at the earth surface can be approximated by multiplying the above result with (R outer core ⁄ R Earth) 3 = (2890 ⁄ 6370) 3 = 0.093 , giving 2.5×10 −5 Tesla, not far from the measured value of 3×10 −5 Tesla at the equator.
The magnetic flux density does not measure how strong a magnetic field is, but only how strong the magnetic flux is in a given point or at a given distance (usually right above the magnet's surface). For the intrinsic order of magnitude of magnetic fields, see: Orders of magnitude (magnetic moment) .
The magnitude of Earth's magnetic field at its surface ranges from 25 to 65 μT (0.25 to 0.65 G). ... Earth's gravity measured by NASA ... that generates the Earth's ...
The dipole model of the Earth's magnetic field is a first order approximation of the rather complex true Earth's magnetic field. Due to effects of the interplanetary magnetic field (IMF), and the solar wind, the dipole model is particularly inaccurate at high L-shells (e.g., above L=3), but may be a good approximation for lower L-shells. For ...
A magnetic field (sometimes called B-field [1]) is a physical field that describes the magnetic influence on moving electric charges, electric currents, [2]: ch1 [3] and magnetic materials. A moving charge in a magnetic field experiences a force perpendicular to its own velocity and to the magnetic field.