enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Cytosine - Wikipedia

    en.wikipedia.org/wiki/Cytosine

    Cytosine (/ ˈ s aɪ t ə ˌ s iː n,-ˌ z iː n,-ˌ s ɪ n / [2] [3]) (symbol C or Cyt) is one of the four nucleotide bases found in DNA and RNA, along with adenine, guanine, and thymine (uracil in RNA). It is a pyrimidine derivative, with a heterocyclic aromatic ring and two substituents attached (an amine group at position 4 and a keto group ...

  3. RNA - Wikipedia

    en.wikipedia.org/wiki/RNA

    Ribonucleic acid (RNA) is a polymeric molecule that is essential for most biological functions, either by performing the function itself (non-coding RNA) or by forming a template for the production of proteins (messenger RNA). RNA and deoxyribonucleic acid (DNA) are nucleic acids.

  4. Nucleic acid - Wikipedia

    en.wikipedia.org/wiki/Nucleic_acid

    The bases found in RNA and DNA are: adenine, cytosine, guanine, thymine, and uracil. Thymine occurs only in DNA and uracil only in RNA. Thymine occurs only in DNA and uracil only in RNA. Using amino acids and protein synthesis , [ 2 ] the specific sequence in DNA of these nucleobase-pairs helps to keep and send coded instructions as genes .

  5. Nucleotide base - Wikipedia

    en.wikipedia.org/wiki/Nucleotide_base

    Similarly, the simple-ring structure of cytosine, uracil, and thymine is derived of pyrimidine, so those three bases are called the pyrimidine bases. [ 6 ] Each of the base pairs in a typical double- helix DNA comprises a purine and a pyrimidine: either an A paired with a T or a C paired with a G.

  6. DNA - Wikipedia

    en.wikipedia.org/wiki/DNA

    For one example, cytosine methylation produces 5-methylcytosine, which is important for X-inactivation of chromosomes. [76] The average level of methylation varies between organisms—the worm Caenorhabditis elegans lacks cytosine methylation, while vertebrates have higher levels, with up to 1% of their DNA containing 5-methylcytosine. [ 77 ]

  7. Nucleic acid structure - Wikipedia

    en.wikipedia.org/wiki/Nucleic_acid_structure

    An example of RNA secondary structure. This image includes several structural elements, including; single-stranded and double-stranded areas, bulges, internal loops and hairpin loops. Double-stranded RNA forms an A-type helical structure, unlike the common B-type conformation taken by double-stranded DNA molecules.

  8. Nucleic acid sequence - Wikipedia

    en.wikipedia.org/wiki/Nucleic_acid_sequence

    These symbols are also valid for RNA, except with U (uracil) replacing T (thymine). [1] Apart from adenine (A), cytosine (C), guanine (G), thymine (T) and uracil (U), DNA and RNA also contain bases that have been modified after the nucleic acid chain has been formed. In DNA, the most common modified base is 5-methylcytidine (m5C).

  9. Base pair - Wikipedia

    en.wikipedia.org/wiki/Base_pair

    This is particularly important in RNA molecules (e.g., transfer RNA), where Watson–Crick base pairs (guanine–cytosine and adenine–uracil) permit the formation of short double-stranded helices, and a wide variety of non–Watson–Crick interactions (e.g., G–U or A–A) allow RNAs to fold into a vast range of specific three-dimensional ...