Search results
Results from the WOW.Com Content Network
In biochemistry, denaturation is a process in which proteins or nucleic acids lose folded structure present in their native state due to various factors, including application of some external stress or compound, such as a strong acid or base, a concentrated inorganic salt, an organic solvent (e.g., alcohol or chloroform), agitation and radiation, or heat. [3]
They can also be converted into glucose. [4] This glucose can then be converted to triglycerides and stored in fat cells. [5] Proteins can be broken down by enzymes known as peptidases or can break down as a result of denaturation. Proteins can denature in environmental conditions the protein is not made for. [6]
Denaturation is the process by which foods or liquids are made unpleasant or dangerous to consume; it is done by adding a substance known as a denaturant. Aversive agents —primarily bitterants and pungent agents —are often used to produce an unpleasant flavor.
Denaturation (biochemistry), a structural change in macromolecules caused by extreme conditions; Denaturation (fissile materials), transforming fissile materials so that they cannot be used in nuclear weapons; Denaturation (food), intentional adulteration of food or drink rendering it unfit for consumption while remaining suitable for other uses
After cooking, it can be considered a protein gel (depending on the length of time it was cooked). Heating high-protein food such as balut can cause the chemical changes to take place and fully or partially denature proteins, causing the surface to become thick and causing an irreversible gel protein to form. [11]
Protein adsorption and protein fouling can cause major problems in the food industry (particularly the dairy industry) when proteins from food adsorb to processing surfaces, such as stainless steel or plastic (e.g. polypropylene). Protein fouling is the gathering of protein aggregates on a surface.
Story at a glance Protein consumption rates in the United States are about 40 percent higher than recommended levels. This excess protein results in excess amino acids, which transform into nitrogen.
In the less extensive technique of equilibrium unfolding, the fractions of folded and unfolded molecules (denoted as and , respectively) are measured as the solution conditions are gradually changed from those favoring the native state to those favoring the unfolded state, e.g., by adding a denaturant such as guanidinium hydrochloride or urea.