Search results
Results from the WOW.Com Content Network
If r > 1, then the series diverges. If r = 1, the root test is inconclusive, and the series may converge or diverge. The root test is stronger than the ratio test: whenever the ratio test determines the convergence or divergence of an infinite series, the root test does too, but not conversely. [1]
In mathematics, the comparison test, sometimes called the direct comparison test to distinguish it from similar related tests (especially the limit comparison test), provides a way of deducing whether an infinite series or an improper integral converges or diverges by comparing the series or integral to one whose convergence properties are known.
In mathematics, the limit comparison test (LCT) (in contrast with the related direct comparison test) is a method of testing for the convergence of an infinite series. Statement [ edit ]
Comparison test can mean: Limit comparison test , a method of testing for the convergence of an infinite series. Direct comparison test , a way of deducing the convergence or divergence of an infinite series or an improper integral.
Many authors do not name this test or give it a shorter name. [2] When testing if a series converges or diverges, this test is often checked first due to its ease of use. In the case of p-adic analysis the term test is a necessary and sufficient condition for convergence due to the non-Archimedean ultrametric triangle inequality.
Download as PDF; Printable version; ... Time series: Fisher's exact test: nominal: non-parametric: unpaired: ... Normality test: sample size between 3 and 5000 ...
In mathematics, the integral test for convergence is a method used to test infinite series of monotonic terms for convergence. It was developed by Colin Maclaurin and Augustin-Louis Cauchy and is sometimes known as the Maclaurin–Cauchy test .
This test can be used with a power series = = where the coefficients c n, and the center p are complex numbers and the argument z is a complex variable. The terms of this series would then be given by a n = c n (z − p) n. One then applies the root test to the a n as above.