Search results
Results from the WOW.Com Content Network
Earth's magnetic field, also known as the geomagnetic field, is the magnetic field that extends from Earth's interior out into space, where it interacts with the solar wind, a stream of charged particles emanating from the Sun.
The following examples are listed in the ascending order of the magnetic-field strength. 3.2 × 10 −5 T (31.869 μT) – strength of Earth's magnetic field at 0° latitude, 0° longitude; 4 × 10 −5 T (40 μT) – walking under a high-voltage power line [9] 5 × 10 −3 T (5 mT) – the strength of a typical refrigerator magnet
Magnetic induction B (also known as magnetic flux density) has the SI unit tesla [T or Wb/m 2]. [1] One tesla is equal to 10 4 gauss. Magnetic field drops off as the inverse cube of the distance ( 1 / distance 3 ) from a dipole source. Energy required to produce laboratory magnetic fields increases with the square of magnetic field. [2]
Earth’s outer core is made up of mostly molten iron, a liquid metal. Unpredictable changes in the way it flows cause the magnetic field around the Earth to shift, which then causes the magnetic ...
The magnetic field of a magnetic dipole has an inverse cubic dependence in distance, so its order of magnitude at the earth surface can be approximated by multiplying the above result with (R outer core ⁄ R Earth) 3 = (2890 ⁄ 6370) 3 = 0.093 , giving 2.5×10 −5 Tesla, not far from the measured value of 3×10 −5 Tesla at the equator.
The magnetic field of larger magnets can be obtained by modeling them as a collection of a large number of small magnets called dipoles each having their own m. The magnetic field produced by the magnet then is the net magnetic field of these dipoles; any net force on the magnet is a result of adding up the forces on the individual dipoles.
These magnetic fields are a hundred million times stronger than any man-made magnet, [11] and about a trillion times more powerful than the field surrounding Earth. [12] Earth has a geomagnetic field of 30–60 microteslas, and a neodymium-based, rare-earth magnet has a field of about 1.25 tesla, with a magnetic energy density of 4.0 × 10 5 J/m 3.
The unit was established by the IEC in the 1930s [4] in honour of Danish physicist Hans Christian Ørsted.Ørsted discovered the connection between magnetism and electric current when a magnetic field produced by a current-carrying copper bar deflected a magnetised needle during a lecture demonstration.