Search results
Results from the WOW.Com Content Network
The alpha helix is also commonly called a: Pauling–Corey–Branson α-helix (from the names of three scientists who described its structure); 3.6 13-helix because there are 3.6 amino acids in one ring, with 13 atoms being involved in the ring formed by the hydrogen bond (starting with amidic hydrogen and ending with carbonyl oxygen)
A pi helix (or π-helix) is a type of secondary structure found in proteins. Discovered by crystallographer Barbara Low in 1952 [1] and once thought to be rare, short π-helices are found in 15% of known protein structures and are believed to be an evolutionary adaptation derived by the insertion of a single amino acid into an α-helix. [2]
A helical wheel is a type of plot or visual representation used to illustrate the properties of alpha helices in proteins. The sequence of amino acids that make up a helical region of the protein's secondary structure are plotted in a rotating manner where the angle of rotation between consecutive amino acids is 100°, so that the final ...
The first widely used techniques to predict protein secondary structure from the amino acid sequence were the Chou–Fasman method [17] [18] [19] and the GOR method. [20] Although such methods claimed to achieve ~60% accurate in predicting which of the three states (helix/sheet/coil) a residue adopts, blind computing assessments later showed ...
The amino acids in a 3 10-helix are arranged in a right-handed helical structure. Each amino acid corresponds to a 120° turn in the helix (i.e., the helix has three residues per turn), and a translation of 2.0 Å (0.20 nm) along the helical axis, and has 10 atoms in the ring formed by making the hydrogen bond.
Protein structure is the three-dimensional arrangement of atoms in an amino acid -chain molecule. Proteins are polymers – specifically polypeptides – formed from sequences of amino acids, which are the monomers of the polymer. A single amino acid monomer may also be called a residue, which indicates a repeating unit of a polymer.
Structure of a typical L-alpha-amino acid in the "neutral" form. Amino acids are organic compounds that contain both amino and carboxylic acid functional groups. [1] Although over 500 amino acids exist in nature, by far the most important are the 22 α-amino acids incorporated into proteins. [2] Only these 22 appear in the genetic code of life ...
Leucine zipper. "Overhead view", or helical wheel diagram, of a leucine zipper, where d represents leucine, arranged with other amino acids on two parallel alpha helices. A leucine zipper (or leucine scissors[1]) is a common three-dimensional structural motif in proteins. They were first described by Landschulz and collaborators in 1988 [2 ...