enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Kolmogorov's three-series theorem - Wikipedia

    en.wikipedia.org/wiki/Kolmogorov's_three-series...

    Kolmogorov's three-series theorem. In probability theory, Kolmogorov's Three-Series Theorem, named after Andrey Kolmogorov, gives a criterion for the almost sure convergence of an infinite series of random variables in terms of the convergence of three different series involving properties of their probability distributions.

  3. 1 + 2 + 3 + 4 + ⋯ - ⋯ - Wikipedia

    en.wikipedia.org/wiki/1_%2B_2_%2B_3_%2B_4_%2B_%E...

    The partial sums of the series 1 + 2 + 3 + 4 + 5 + 6 + ⋯ are 1, 3, 6, 10, 15, etc.The nth partial sum is given by a simple formula: = = (+). This equation was known ...

  4. Fibonacci sequence - Wikipedia

    en.wikipedia.org/wiki/Fibonacci_sequence

    In mathematics, the Fibonacci sequence is a sequence in which each number is the sum of the two preceding ones. Numbers that are part of the Fibonacci sequence are known as Fibonacci numbers, commonly denoted Fn . Many writers begin the sequence with 0 and 1, although some authors start it from 1 and 1 [1][2] and some (as did Fibonacci) from 1 ...

  5. Series (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Series_(mathematics)

    t. e. In mathematics, a series is, roughly speaking, an addition of infinitely many terms, one after the other. [1] The study of series is a major part of calculus and its generalization, mathematical analysis. Series are used in most areas of mathematics, even for studying finite structures in combinatorics through generating functions.

  6. Harmonic series (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Harmonic_series_(mathematics)

    Calculus. In mathematics, the harmonic series is the infinite series formed by summing all positive unit fractions: The first terms of the series sum to approximately , where is the natural logarithm and is the Euler–Mascheroni constant. Because the logarithm has arbitrarily large values, the harmonic series does not have a finite limit: it ...

  7. Convergent series - Wikipedia

    en.wikipedia.org/wiki/Convergent_series

    Convergent series. In mathematics, a series is the sum of the terms of an infinite sequence of numbers. More precisely, an infinite sequence defines a series S that is denoted. {\displaystyle S=a_ {1}+a_ {2}+a_ {3}+\cdots =\sum _ {k=1}^ {\infty }a_ {k}.} The n th partial sum Sn is the sum of the first n terms of the sequence; that is,

  8. Summation - Wikipedia

    en.wikipedia.org/wiki/Summation

    t. e. In mathematics, summation is the addition of a sequence of numbers, called addends or summands; the result is their sum or total. Beside numbers, other types of values can be summed as well: functions, vectors, matrices, polynomials and, in general, elements of any type of mathematical objects on which an operation denoted "+" is defined.

  9. Basel problem - Wikipedia

    en.wikipedia.org/wiki/Basel_problem

    The sum of the series is approximately equal to 1.644934. [3] The Basel problem asks for the exact sum of this series (in closed form ), as well as a proof that this sum is correct. Euler found the exact sum to be π 2 / 6 {\displaystyle \pi ^{2}/6} and announced this discovery in 1735.