Search results
Results from the WOW.Com Content Network
H {\displaystyle H} is the magnitude of the applied magnetic field (A/m), T {\displaystyle T} is absolute temperature (K), C {\displaystyle C} is a material-specific Curie constant (K). Pierre Curie discovered this relation, now known as Curie's law, by fitting data from experiment. It only holds for high temperatures and weak magnetic fields.
A common example is the interaction of the solar wind with the magnetic fields of the Sun [12] or Earth. [13] In this case, the betas of these natural phenomena are generally much smaller than those seen in reactor designs; the Sun's corona has a beta around 1%. [12] Active regions have much higher beta, over 1 in some cases, which makes the ...
Magnetic reconnection is a breakdown of "ideal-magnetohydrodynamics" and so of "Alfvén's theorem" (also called the "frozen-in flux theorem") which applies to large-scale regions of a highly-conducting magnetoplasma, for which the Magnetic Reynolds Number is very large: this makes the convective term in the induction equation dominate in such regions.
A Birkeland current (also known as field-aligned current, FAC) is a set of electrical currents that flow along geomagnetic field lines connecting the Earth's magnetosphere to the Earth's high latitude ionosphere. In the Earth's magnetosphere, the currents are driven by the solar wind and interplanetary magnetic field (IMF) and by bulk motions ...
Above the Curie temperature, the magnetic spins are randomly aligned in a paramagnet unless a magnetic field is applied. In physics and materials science, the Curie temperature (TC), or Curie point, is the temperature above which certain materials lose their permanent magnetic properties, which can (in most cases) be replaced by induced magnetism.
Magnetosphere. A rendering of the magnetic field lines of the magnetosphere of the Earth. In astronomy and planetary science, a magnetosphere is a region of space surrounding an astronomical object in which charged particles are affected by that object's magnetic field. [1][2] It is created by a celestial body with an active interior dynamo.
You can find instant answers on our AOL Mail help page. Should you need additional assistance we have experts available around the clock at 800-730-2563.
Schematic view of the different current systems which shape the Earth's magnetosphere. In many MHD systems most of the electric current is compressed into thin nearly-two-dimensional ribbons termed current sheets. [10] These can divide the fluid into magnetic domains, inside of which the currents are relatively weak.