Ads
related to: 1 11 decimal expansion worksheet 5th 2ndteacherspayteachers.com has been visited by 100K+ users in the past month
- Resources on Sale
The materials you need at the best
prices. Shop limited time offers.
- Packets
Perfect for independent work!
Browse our fun activity packs.
- Try Easel
Level up learning with interactive,
self-grading TPT digital resources.
- Worksheets
All the printables you need for
math, ELA, science, and much more.
- Resources on Sale
Search results
Results from the WOW.Com Content Network
The value of n is then the period of the decimal expansion of 1/p. [10] At present, more than fifty decimal unique primes or probable primes are known. However, there are only twenty-three unique primes below 10 100. The decimal unique primes are 3, 11, 37, 101, 9091, 9901, 333667, 909091, ... (sequence A040017 in the OEIS).
Every terminating decimal representation can be written as a decimal fraction, a fraction whose denominator is a power of 10 (e.g. 1.585 = 1585 / 1000 ); it may also be written as a ratio of the form k / 2 n ·5 m (e.g. 1.585 = 317 / 2 3 ·5 2 ).
Also the converse is true: The decimal expansion of a rational number is either finite, or endlessly repeating. Finite decimal representations can also be seen as a special case of infinite repeating decimal representations. For example, 36 ⁄ 25 = 1.44 = 1.4400000...; the endlessly repeated sequence is the one-digit sequence "0".
The extended Midy's theorem [2] states that if the repeating portion of the decimal expansion of a/p is divided into k-digit numbers, then their sum is a multiple of 10 k − 1. For example, 1 19 = 0. 052631578947368421 ¯ {\displaystyle {\frac {1}{19}}=0.{\overline {052631578947368421}}}
Figure 2 is used for the multiples of 2, 4, 6, and 8. These patterns can be used to memorize the multiples of any number from 0 to 10, except 5. As you would start on the number you are multiplying, when you multiply by 0, you stay on 0 (0 is external and so the arrows have no effect on 0, otherwise 0 is used as a link to create a perpetual cycle).
The Riemann hypothesis states that the real part of every nontrivial zero must be 1 / 2 . In other words, all known nontrivial zeros of the Riemann zeta are of the form z = 1 / 2 + yi where y is a real number. The following table contains the decimal expansion of Im(z) for the first few nontrivial zeros:
Ads
related to: 1 11 decimal expansion worksheet 5th 2ndteacherspayteachers.com has been visited by 100K+ users in the past month