Search results
Results from the WOW.Com Content Network
The thermosphere (or the upper atmosphere) is the height region above 85 kilometres (53 mi), while the region between the tropopause and the mesopause is the middle atmosphere (stratosphere and mesosphere) where absorption of solar UV radiation generates the temperature maximum near an altitude of 45 kilometres (28 mi) and causes the ozone layer.
The thermosphere is the second-highest layer of Earth's atmosphere. It extends from the mesopause (which separates it from the mesosphere) at an altitude of about 80 km (50 mi; 260,000 ft) up to the thermopause at an altitude range of 500–1000 km (310–620 mi
Following the tropopause is the stratosphere. This layer extends from the tropopause to the stratopause, which is located at an altitude of about 50 km (31 mi). Temperatures remain constant with height from the tropopause to an altitude of 20 km (12 mi), after which they start to increase with height.
Kincheloe flew 2000 miles per hour (3,200 km/h) at 126,000 feet (38,500 m), or 24 miles up. At this altitude and speed, aerodynamic lift still carries 98 percent of the weight of the plane, and only two percent is carried by inertia, or Kepler force, as space scientists call it. But at 300,000 feet (91,440 m) or 57 miles up, this relationship ...
The wind speeds are greatest where temperature differences between air masses are greatest, and often exceed 92 km/h (50 kn; 57 mph). [22] Speeds of 400 km/h (220 kn; 250 mph) have been measured. [26] The jet stream moves from West to East bringing changes of weather. [27]
The energy required to reach Earth orbital velocity at an altitude of 600 km (370 mi) is about 36 MJ/kg, which is six times the energy needed merely to climb to the corresponding altitude. [93] The escape velocity required to pull free of Earth's gravitational field altogether and move into interplanetary space is about 11,200 m/s (40,300 km/h ...
The thermopause is the atmospheric boundary of Earth's energy system, located at the top of the thermosphere. [1] The temperature of the thermopause could range from nearly absolute zero to 987.547 °C (1,810 °F). Below this, the atmosphere is defined to be active [clarification needed] on the insolation received, due to the increased presence ...
Hypersonic flight. Hypersonic flight is flight through the atmosphere below altitudes of about 90 km (56 mi) at speeds greater than Mach 5, a speed where dissociation of air begins to become significant and high heat loads exist. Speeds over Mach 25 have been achieved below the thermosphere as of 2020. [citation needed]