Search results
Results from the WOW.Com Content Network
This has the same form as an equation for a straight line: = +, where x is the reciprocal of T. So, when a reaction has a rate constant obeying the Arrhenius equation, a plot of ln k versus T −1 gives a straight line, whose slope and intercept can be used to determine E a and A respectively. This procedure is common in experimental chemical ...
In the Arrhenius equation, the term activation energy (Ea) is used to describe the energy required to reach the transition state, and the exponential relationship k = A exp (−Ea/RT) holds. In transition state theory, a more sophisticated model of the relationship between reaction rates and the transition state, a superficially similar ...
Arrhenius plot. In chemical kinetics, an Arrhenius plot displays the logarithm of a reaction rate constant, ( , ordinate axis) plotted against reciprocal of the temperature ( , abscissa). [1] Arrhenius plots are often used to analyze the effect of temperature on the rates of chemical reactions. For a single rate-limited thermally activated ...
Using the Eyring equation, there is a straightforward relationship between ΔG ‡, first-order rate constants, and reaction half-life at a given temperature. At 298 K, a reaction with ΔG ‡ = 23 kcal/mol has a rate constant of k ≈ 8.4 × 10 −5 s −1 and a half life of t 1/2 ≈ 2.3 hours, figures that are often rounded to k ~ 10 −4 s ...
Pre-exponential factor. In chemical kinetics, the pre-exponential factor or A factor is the pre-exponential constant in the Arrhenius equation (equation shown below), an empirical relationship between temperature and rate coefficient. It is usually designated by A when determined from experiment, while Z is usually left for collision frequency.
Lattice diffusion coefficient. Interstitial Atomic diffusion across a 4-coordinated lattice. Note that the atoms often block each other from moving to adjacent sites. As per Fick’s law, the net flux (or movement of atoms) is always in the opposite direction of the concentration gradient. H + ions diffusing in an O 2- lattice of superionic ice.
Collision theory. Reaction rate tends to increase with concentration phenomenon explained by collision theory. Collision theory is a principle of chemistry used to predict the rates of chemical reactions. It states that when suitable particles of the reactant hit each other with the correct orientation, only a certain amount of collisions ...
In thermodynamics, enthalpy–entropy compensation is a specific example of the compensation effect. The compensation effect refers to the behavior of a series of closely related chemical reactions (e.g., reactants in different solvents or reactants differing only in a single substituent), which exhibit a linear relationship between one of the following kinetic or thermodynamic parameters for ...