enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Acoustic wave equation - Wikipedia

    en.wikipedia.org/wiki/Acoustic_wave_equation

    Acoustic wave equation. In physics, the acoustic wave equation is a second-order partial differential equation that governs the propagation of acoustic waves through a material medium resp. a standing wavefield. The equation describes the evolution of acoustic pressure p or particle velocity u as a function of position x and time t.

  3. Acoustic wave - Wikipedia

    en.wikipedia.org/wiki/Acoustic_wave

    Acoustic wave is a mechanical wave that transmits energy through the movements of atoms and molecules. Acoustic wave transmits through fluids in longitudinal manner (movement of particles are parallel to the direction of propagation of the wave); in contrast to electromagnetic wave that transmits in transverse manner (movement of particles at a right angle to the direction of propagation of ...

  4. Acoustic attenuation - Wikipedia

    en.wikipedia.org/wiki/Acoustic_attenuation

    On the other hand, acoustic wave equations based on fractional derivative viscoelastic models are applied to describe the power law frequency dependent acoustic attenuation. [18] Chen and Holm proposed the positive fractional derivative modified Szabo's wave equation [11] and the fractional Laplacian wave equation. [11] See [20] for a paper ...

  5. Acoustic theory - Wikipedia

    en.wikipedia.org/wiki/Acoustic_theory

    Acoustic theory. Acoustic theory is a scientific field that relates to the description of sound waves. It derives from fluid dynamics. See acoustics for the engineering approach. For sound waves of any magnitude of a disturbance in velocity, pressure, and density we have. In the case that the fluctuations in velocity, density, and pressure are ...

  6. Wave equation - Wikipedia

    en.wikipedia.org/wiki/Wave_equation

    Wave equation. The wave equation is a second-order linear partial differential equation for the description of waves or standing wave fields such as mechanical waves (e.g. water waves, sound waves and seismic waves) or electromagnetic waves (including light waves). It arises in fields like acoustics, electromagnetism, and fluid dynamics.

  7. Stokes's law of sound attenuation - Wikipedia

    en.wikipedia.org/wiki/Stokes's_law_of_sound...

    In acoustics, Stokes's law of sound attenuation is a formula for the attenuation of sound in a Newtonian fluid, such as water or air, due to the fluid's viscosity.It states that the amplitude of a plane wave decreases exponentially with distance traveled, at a rate α given by = where η is the dynamic viscosity coefficient of the fluid, ω is the sound's angular frequency, ρ is the fluid ...

  8. Sound pressure - Wikipedia

    en.wikipedia.org/wiki/Sound_pressure

    TL. v. t. e. Sound pressure or acoustic pressure is the local pressure deviation from the ambient (average or equilibrium) atmospheric pressure, caused by a sound wave. In air, sound pressure can be measured using a microphone, and in water with a hydrophone. The SI unit of sound pressure is the pascal (Pa).

  9. Surface acoustic wave - Wikipedia

    en.wikipedia.org/wiki/Surface_acoustic_wave

    Experimental image of surface acoustic waves on a crystal of tellurium oxide [1]. A surface acoustic wave (SAW) is an acoustic wave traveling along the surface of a material exhibiting elasticity, with an amplitude that typically decays exponentially with depth into the material, such that they are confined to a depth of about one wavelength.