enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Methods of computing square roots - Wikipedia

    en.wikipedia.org/wiki/Methods_of_computing...

    A method analogous to piece-wise linear approximation but using only arithmetic instead of algebraic equations, uses the multiplication tables in reverse: the square root of a number between 1 and 100 is between 1 and 10, so if we know 25 is a perfect square (5 × 5), and 36 is a perfect square (6 × 6), then the square root of a number greater than or equal to 25 but less than 36, begins with ...

  3. Solving quadratic equations with continued fractions - Wikipedia

    en.wikipedia.org/wiki/Solving_quadratic...

    Denoting the two roots by r 1 and r 2 we distinguish three cases. If the discriminant is zero the fraction converges to the single root of multiplicity two. If the discriminant is not zero, and |r 1 | ≠ |r 2 |, the continued fraction converges to the root of maximum modulus (i.e., to the root with the greater absolute value).

  4. HP 35s - Wikipedia

    en.wikipedia.org/wiki/HP_35s

    The calculator uses its logic to attempt to isolate the value of the required variable, after prompting the user for the values of the other variables. Since this process takes time, and the equation may have more than one solution, it is guided by two "guesses" which it assumes to have been provided by the user, in the stack's X register, and ...

  5. Rationalisation (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Rationalisation_(mathematics)

    In elementary algebra, root rationalisation (or rationalization) is a process by which radicals in the denominator of an algebraic fraction are eliminated.. If the denominator is a monomial in some radical, say , with k < n, rationalisation consists of multiplying the numerator and the denominator by , and replacing by x (this is allowed, as, by definition, a n th root of x is a number that ...

  6. Quadratic irrational number - Wikipedia

    en.wikipedia.org/wiki/Quadratic_irrational_number

    If D is a non-square natural number, then there is a natural number n such that: n 2 < D < (n + 1) 2, so in particular 0 < √ D − n < 1. If the square root of D is rational, then it can be written as the irreducible fraction p/q, so that q is the smallest possible denominator, and hence the smallest number for which q √ D is also an ...

  7. Square root - Wikipedia

    en.wikipedia.org/wiki/Square_root

    The square root of a positive integer is the product of the roots of its prime factors, because the square root of a product is the product of the square roots of the factors. Since p 2 k = p k , {\textstyle {\sqrt {p^{2k}}}=p^{k},} only roots of those primes having an odd power in the factorization are necessary.

  8. Nested radical - Wikipedia

    en.wikipedia.org/wiki/Nested_radical

    In the case of two nested square roots, the following theorem completely solves the problem of denesting. [2]If a and c are rational numbers and c is not the square of a rational number, there are two rational numbers x and y such that + = if and only if is the square of a rational number d.

  9. Steffensen's method - Wikipedia

    en.wikipedia.org/wiki/Steffensen's_method

    Since the secant method can carry out twice as many steps in the same time as Steffensen's method, [b] in practical use the secant method actually converges faster than Steffensen's method, when both algorithms succeed: The secant method achieves a factor of about (1.6) 2 ≈ 2.6 times as many digits for every two steps (two function ...