Search results
Results from the WOW.Com Content Network
The construction of a liquid vapor phase diagram assumes an ideal liquid solution obeying Raoult's law and an ideal gas mixture obeying Dalton's law of partial pressure. A tie line from the liquid to the gas at constant pressure would indicate the two compositions of the liquid and gas respectively. [14]
The model assumptions are: the uncompressed volume of the cylinder is one litre (1 L = 1000 cm 3 = 0.001 m 3); the gas within is the air consisting of molecular nitrogen and oxygen only (thus a diatomic gas with 5 degrees of freedom, and so γ = 7 / 5 ); the compression ratio of the engine is 10:1 (that is, the 1 L volume of uncompressed ...
An illustration of Dalton's law using the gases of air at sea level. Dalton's law (also called Dalton's law of partial pressures) states that in a mixture of non-reacting gases, the total pressure exerted is equal to the sum of the partial pressures of the individual gases. [1]
Flubber, also commonly known as slime, is a non-Newtonian fluid, easily made from polyvinyl alcohol–based glues (such as white "school" glue) and borax. It flows under low stresses but breaks under higher stresses and pressures. This combination of fluid-like and solid-like properties makes it a Maxwell fluid.
A typical phase diagram.The solid green line applies to most substances; the dashed green line gives the anomalous behavior of water. In thermodynamics, the triple point of a substance is the temperature and pressure at which the three phases (gas, liquid, and solid) of that substance coexist in thermodynamic equilibrium. [1]
The atmospheric pressure is roughly equal to the sum of partial pressures of constituent gases – oxygen, nitrogen, argon, water vapor, carbon dioxide, etc.. In a mixture of gases, each constituent gas has a partial pressure which is the notional pressure of that constituent gas as if it alone occupied the entire volume of the original mixture at the same temperature. [1]
That is, no heat is added to the flow, and no energy transformations occur due to friction or dissipative effects. For an isentropic flow of a perfect gas , several relations can be derived to define the pressure, density and temperature along a streamline.
Also, there is no surface tension in a supercritical fluid, as there is no liquid/gas phase boundary. By changing the pressure and temperature of the fluid, the properties can be "tuned" to be more liquid-like or more gas-like. One of the most important properties is the solubility of material in the fluid.