enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Table of divisors - Wikipedia

    en.wikipedia.org/wiki/Table_of_divisors

    a highly abundant number has a sum of positive divisors that is greater than any lesser number; that is, σ(n) > σ(m) for every positive integer m < n. Counterintuitively, the first seven highly abundant numbers are not abundant numbers. a prime number has only 1 and itself as divisors; that is, d(n) = 2

  3. Divisibility rule - Wikipedia

    en.wikipedia.org/wiki/Divisibility_rule

    For divisors with multiple rules, the rules are generally ordered first for those appropriate for numbers with many digits, then those useful for numbers with fewer digits. To test the divisibility of a number by a power of 2 or a power of 5 (2 n or 5 n, in which n is a positive integer), one only need to look at the last n digits of that number.

  4. List of types of numbers - Wikipedia

    en.wikipedia.org/wiki/List_of_types_of_numbers

    Even and odd numbers: An integer is even if it is a multiple of 2, and is odd otherwise. Prime number: A positive integer with exactly two positive divisors: itself and 1. The primes form an infinite sequence 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, ...

  5. Multiple (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Multiple_(mathematics)

    In mathematics, a multiple is the product of any quantity and an integer. [1] In other words, for the quantities a and b , it can be said that b is a multiple of a if b = na for some integer n , which is called the multiplier .

  6. Divisor - Wikipedia

    en.wikipedia.org/wiki/Divisor

    The divisors of 10 illustrated with Cuisenaire rods: 1, 2, 5, and 10. In mathematics, a divisor of an integer , also called a factor of , is an integer that may be multiplied by some integer to produce . [1] In this case, one also says that is a multiple of .

  7. Highly composite number - Wikipedia

    en.wikipedia.org/wiki/Highly_composite_number

    A highly composite number is a positive integer that has more divisors than all smaller positive integers. If d(n) denotes the number of divisors of a positive integer n, then a positive integer N is highly composite if d(N) > d(n) for all n < N. For example, 6 is highly composite because d(6)=4 and d(n)=1,2,2,3,2 for n=1,2,3,4,5 respectively.

  8. Pythagorean triple - Wikipedia

    en.wikipedia.org/wiki/Pythagorean_triple

    [8]: 30 For each positive integer k, there exist at least k different Pythagorean triples with the same hypotenuse. [8]: 31 If c = p e is a prime power, there exists a primitive Pythagorean triple a 2 + b 2 = c 2 if and only if the prime p has the form 4n + 1; this triple is unique up to the exchange of a and b.

  9. Greatest common divisor - Wikipedia

    en.wikipedia.org/wiki/Greatest_common_divisor

    For positive integers a, gcd(a, a) = a. Every common divisor of a and b is a divisor of gcd(a, b). gcd(a, b), where a and b are not both zero, may be defined alternatively and equivalently as the smallest positive integer d which can be written in the form d = a⋅p + b⋅q, where p and q are integers.