Search results
Results from the WOW.Com Content Network
Newton's corpuscular theory of light was gradually succeeded by the wave theory. It was not until the 19th century that the quantitative measurement of dispersed light was recognized and standardized. As with many subsequent spectroscopy experiments, Newton's sources of white light included flames and stars, including the Sun.
This is a result of the prism material's index of refraction varying with wavelength (dispersion). Generally, longer wavelengths (red) undergo a smaller deviation than shorter wavelengths (blue). The dispersion of white light into colors by a prism led Sir Isaac Newton to conclude that white light consisted of a mixture of different colors.
Thus, he observed that colour is the result of objects interacting with already-coloured light rather than objects generating the colour themselves. This is known as Newton's theory of colour. [81] Illustration of a dispersive prism separating white light into the colours of the spectrum, as discovered by Newton
He discovered and was the first to make accurate observations on the diffraction of light [3] [4] (although by some accounts Leonardo da Vinci had earlier noted it [5]), and coined the word 'diffraction'. In his book Physico-Mathesis de Lumine, Coloribus et Iride (1665), he stated the theory of the reconstitution of sunlight from refracted ...
Newton sets forth in full his experiments, first reported to the Royal Society of London in 1672, [2] on dispersion, or the separation of light into a spectrum of its component colours. He demonstrates how the appearance of color arises from selective absorption, reflection, or transmission of the various component parts of the incident light.
This theory came to dominate the conceptions of light in the eighteenth century, displacing the previously prominent vibration theories, where light was viewed as "pressure" of the medium between the source and the receiver, first championed by René Descartes, and later in a more refined form by Christiaan Huygens. [1]
In biochemical spectroscopy, information can be gathered about biological tissue by absorption and light scattering techniques. Light scattering spectroscopy is a type of reflectance spectroscopy that determines tissue structures by examining elastic scattering. [10] In such a case, it is the tissue that acts as a diffraction or dispersion ...
Material dispersion can be a desirable or undesirable effect in optical applications. The dispersion of light by glass prisms is used to construct spectrometers and spectroradiometers. However, in lenses, dispersion causes chromatic aberration, an undesired effect that may degrade images in microscopes, telescopes, and photographic objectives.