Search results
Results from the WOW.Com Content Network
The main idea is to express an integral involving an integer parameter (e.g. power) of a function, represented by I n, in terms of an integral that involves a lower value of the parameter (lower power) of that function, for example I n-1 or I n-2. This makes the reduction formula a type of recurrence relation. In other words, the reduction ...
In mathematics, a recurrence relation is an equation according to which the th term of a sequence of numbers is equal to some combination of the previous terms. Often, only previous terms of the sequence appear in the equation, for a parameter that is independent of ; this number is called the order of the relation.
Perhaps the best-known value of the gamma function at a non-integer argument is =, which can be found by setting = in the reflection or duplication formulas, by using the relation to the beta function given below with = =, or simply by making the substitution = in the integral definition of the gamma function, resulting in a Gaussian integral.
Like the integral of the first kind, the complete elliptic integral of the second kind can be computed very efficiently using the arithmetic–geometric mean. [1] Define sequences a n and g n, where a 0 = 1, g 0 = √ 1 − k 2 = k ′ and the recurrence relations a n + 1 = a n + g n / 2 , g n + 1 = √ a n g n hold.
A line integral (sometimes called a path integral) is an integral where the function to be integrated is evaluated along a curve. [42] Various different line integrals are in use. In the case of a closed curve it is also called a contour integral. The function to be integrated may be a scalar field or a vector field.
The volume can be computed without use of the Gamma function. As is proved below using a vector-calculus double integral in polar coordinates, the volume V of an n-ball of radius R can be expressed recursively in terms of the volume of an (n − 2)-ball, via the interleaved recurrence relation:
The Cauchy formula for repeated integration, named after Augustin-Louis Cauchy, allows one to compress n antiderivatives of a function into a single integral (cf. Cauchy's formula). For non-integer n it yields the definition of fractional integrals and (with n < 0) fractional derivatives.
The sequence () is decreasing and has positive terms. In fact, for all : >, because it is an integral of a non-negative continuous function which is not identically zero; + = + = () () >, again because the last integral is of a non-negative continuous function.