enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Integration by reduction formulae - Wikipedia

    en.wikipedia.org/wiki/Integration_by_reduction...

    In integral calculus, integration by reduction formulae is a method relying on recurrence relations. It is used when an expression containing an integer parameter , usually in the form of powers of elementary functions, or products of transcendental functions and polynomials of arbitrary degree , can't be integrated directly.

  3. Wallis' integrals - Wikipedia

    en.wikipedia.org/wiki/Wallis'_integrals

    By means of integration by parts, a reduction formula can be obtained. Using the identity ⁡ = ⁡, we have for all , ⁡ = (⁡) (⁡) = ⁡ ⁡ ⁡. Integrating the second integral by parts, with:

  4. Cauchy formula for repeated integration - Wikipedia

    en.wikipedia.org/wiki/Cauchy_formula_for...

    The Cauchy formula for repeated integration, named after Augustin-Louis Cauchy, allows one to compress n antiderivatives of a function into a single integral (cf. Cauchy's formula). For non-integer n it yields the definition of fractional integrals and (with n < 0) fractional derivatives.

  5. Elliptic integral - Wikipedia

    en.wikipedia.org/wiki/Elliptic_integral

    Like the integral of the first kind, the complete elliptic integral of the second kind can be computed very efficiently using the arithmetic–geometric mean. [1] Define sequences a n and g n, where a 0 = 1, g 0 = √ 1 − k 2 = k ′ and the recurrence relations a n + 1 = ⁠ a n + g n / 2 ⁠, g n + 1 = √ a n g n hold.

  6. Gregory coefficients - Wikipedia

    en.wikipedia.org/wiki/Gregory_coefficients

    These numbers are named after James Gregory who introduced them in 1670 in the numerical integration context. They were subsequently rediscovered by many mathematicians and often appear in works of modern authors, who do not always recognize them. [1] [5] [14] [15] [16] [17]

  7. Multiple integral - Wikipedia

    en.wikipedia.org/wiki/Multiple_integral

    Just as the definite integral of a positive function of one variable represents the area of the region between the graph of the function and the x-axis, the double integral of a positive function of two variables represents the volume of the region between the surface defined by the function (on the three-dimensional Cartesian plane where z = f(x, y)) and the plane which contains its domain. [1]

  8. Pell's equation - Wikipedia

    en.wikipedia.org/wiki/Pell's_equation

    Pell's equation for n = 2 and six of its integer solutions. Pell's equation, also called the Pell–Fermat equation, is any Diophantine equation of the form =, where n is a given positive nonsquare integer, and integer solutions are sought for x and y.

  9. Recurrence relation - Wikipedia

    en.wikipedia.org/wiki/Recurrence_relation

    In mathematics, a recurrence relation is an equation according to which the th term of a sequence of numbers is equal to some combination of the previous terms. Often, only previous terms of the sequence appear in the equation, for a parameter that is independent of ; this number is called the order of the relation.