Ads
related to: lateral meristem growth hormone
Search results
Results from the WOW.Com Content Network
The shoot tip rising from the SAM inhibits the growth of the lateral bud by repressing auxin. When the shoot is cut off, the lateral bud begins to lengthen which is mediated by a release of cytokinin. Once the apical dominance has been lifted from the plant, elongation and lateral growth is promoted and the lateral buds grow into new branches.
The cork cambium is a lateral meristem and is responsible for secondary growth that replaces the epidermis in roots and stems. It is found in woody and many herbaceous dicots, gymnosperms and some monocots (monocots usually lack secondary growth). It is one of the plant's meristems – the series of tissues consisting of embryonic disk ...
After the primary growth, lateral meristems develop as secondary plant growth. This growth adds to the plant in diameter from the established stem but not all plants exhibit secondary growth. There are two types of secondary meristems: the vascular cambium and the cork cambium. Vascular cambium, which produces secondary xylem and secondary ...
Lateral shoots/branches are often numerous on larger vegetation such as certain trees or bushes. A lateral shoot , commonly known as a branch , is a part of a plant's shoot system that develops from axillary buds on the stem's surface, extending laterally from the plant's stem .
In contrast, a growth process that involves thickening of stems takes place within lateral meristems that are located throughout the length of the stems. The lateral meristems of larger plants also extend into the roots. This thickening is secondary growth and is needed to give mechanical support and stability to the plant. [4]
These axillary buds are usually dormant, inhibited by auxin produced by the apical meristem, which is known as apical dominance. If the apical meristem is removed, or has grown a sufficient distance away from an axillary bud, the axillary bud may become activated (or more appropriately freed from hormone inhibition).
Plant hormones control all aspects of plant growth and development, including embryogenesis, [1] the regulation of organ size, pathogen defense, [2] [3] stress tolerance [4] [5] and reproductive development. [6] Unlike in animals (in which hormone production is restricted to specialized glands) each plant cell is capable of producing hormones.
Went later proposed that the messenger substance is a growth-promoting hormone, which he named auxin, that becomes asymmetrically distributed in the bending region. Went concluded that auxin is at a higher concentration on the shaded side, promoting cell elongation, which results in coleoptiles bending towards the light.
Ads
related to: lateral meristem growth hormone