enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Greedy algorithm - Wikipedia

    en.wikipedia.org/wiki/Greedy_algorithm

    A greedy algorithm is any algorithm that follows the problem-solving heuristic of making the locally optimal choice at each stage. [1] In many problems, a greedy strategy does not produce an optimal solution, but a greedy heuristic can yield locally optimal solutions that approximate a globally optimal solution in a reasonable amount of time.

  3. Set cover problem - Wikipedia

    en.wikipedia.org/wiki/Set_cover_problem

    This greedy algorithm actually achieves an approximation ratio of (′) where ′ is the maximum cardinality set of . For δ − {\displaystyle \delta -} dense instances, however, there exists a c ln ⁡ m {\displaystyle c\ln {m}} -approximation algorithm for every c > 0 {\displaystyle c>0} .

  4. Activity selection problem - Wikipedia

    en.wikipedia.org/wiki/Activity_selection_problem

    The activity selection problem is also known as the Interval scheduling maximization problem (ISMP), which is a special type of the more general Interval Scheduling problem. A classic application of this problem is in scheduling a room for multiple competing events, each having its own time requirements (start and end time), and many more arise ...

  5. Maximum coverage problem - Wikipedia

    en.wikipedia.org/wiki/Maximum_coverage_problem

    The algorithm has several stages. First, find a solution using greedy algorithm. In each iteration of the greedy algorithm the tentative solution is added the set which contains the maximum residual weight of elements divided by the residual cost of these elements along with the residual cost of the set.

  6. Optimal substructure - Wikipedia

    en.wikipedia.org/wiki/Optimal_substructure

    This property is used to determine the usefulness of greedy algorithms for a problem. [1] Typically, a greedy algorithm is used to solve a problem with optimal substructure if it can be proven by induction that this is optimal at each step. [1] Otherwise, provided the problem exhibits overlapping subproblems as well, divide-and-conquer methods ...

  7. Assignment problem - Wikipedia

    en.wikipedia.org/wiki/Assignment_problem

    This algorithm may yield a non-optimal solution. For example, suppose there are two tasks and two agents with costs as follows: Alice: Task 1 = 1, Task 2 = 2. George: Task 1 = 5, Task 2 = 8. The greedy algorithm would assign Task 1 to Alice and Task 2 to George, for a total cost of 9; but the reverse assignment has a total cost of 7.

  8. Knapsack problem - Wikipedia

    en.wikipedia.org/wiki/Knapsack_problem

    A 1999 study of the Stony Brook University Algorithm Repository showed that, out of 75 algorithmic problems related to the field of combinatorial algorithms and algorithm engineering, the knapsack problem was the 19th most popular and the third most needed after suffix trees and the bin packing problem.

  9. Change-making problem - Wikipedia

    en.wikipedia.org/wiki/Change-making_problem

    One variation of this problem assumes that the people making change will use the "greedy algorithm" for making change, even when that requires more than the minimum number of coins. Most current currencies use a 1-2-5 series , but some other set of denominations would require fewer denominations of coins or a smaller average number of coins to ...