Search results
Results from the WOW.Com Content Network
Download QR code; Print/export Download as PDF; Printable version; In other projects Wikimedia Commons; Wikidata item; ... Pages in category "Integral calculus"
In integral calculus, Glasser's master theorem explains how a certain broad class of substitutions can simplify certain integrals over the whole interval from to +. It is applicable in cases where the integrals must be construed as Cauchy principal values, and a fortiori it is applicable when the integral converges absolutely.
Institutiones calculi integralis (Foundations of integral calculus) is a three-volume textbook written by Leonhard Euler and published in 1768. It was on the subject of integral calculus and contained many of Euler's discoveries about differential equations .
Occasionally an alternative calculus is more suited than the classical calculus for expressing a given scientific or mathematical idea. [2] [3] [4] The table below is intended to assist people working with the alternative calculus called the "geometric calculus" (or its discrete analog).
In integral calculus, Euler's formula for complex numbers may be used to evaluate integrals involving trigonometric functions. Using Euler's formula, any trigonometric function may be written in terms of complex exponential functions, namely e i x {\displaystyle e^{ix}} and e − i x {\displaystyle e^{-ix}} and then integrated.
Integration is the basic operation in integral calculus. While differentiation has straightforward rules by which the derivative of a complicated function can be found by differentiating its simpler component functions, integration does not, so tables of known integrals are often useful.
Sum rule in integration; Constant factor rule in integration; Linearity of integration; Arbitrary constant of integration; Cavalieri's quadrature formula; Fundamental theorem of calculus; Integration by parts; Inverse chain rule method; Integration by substitution. Tangent half-angle substitution; Differentiation under the integral sign ...
In integral calculus, integration by reduction formulae is a method relying on recurrence relations. It is used when an expression containing an integer parameter , usually in the form of powers of elementary functions, or products of transcendental functions and polynomials of arbitrary degree , can't be integrated directly.