enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Barlow's formula - Wikipedia

    en.wikipedia.org/wiki/Barlow's_formula

    The design of a complex pressure containment system involves much more than the application of Barlow's formula. For example, in 100 countries the ASME BPVCcode stipulates the requirements for design and testing of pressure vessels.

  3. Cylinder stress - Wikipedia

    en.wikipedia.org/wiki/Cylinder_stress

    For the thin-walled assumption to be valid, the vessel must have a wall thickness of no more than about one-tenth (often cited as Diameter / t > 20) of its radius. [4] This allows for treating the wall as a surface, and subsequently using the Young–Laplace equation for estimating the hoop stress created by an internal pressure on a thin-walled cylindrical pressure vessel:

  4. Pressure vessel - Wikipedia

    en.wikipedia.org/wiki/Pressure_vessel

    The ASME definition of a pressure vessel is a container designed to hold gases or liquids at a pressure substantially different from the ambient pressure. [2]The Australian and New Zealand standard "AS/NZS 1200:2000 Pressure equipment" defines a pressure vessel as a vessel subject to internal or external pressure, including connected components and accessories up to the connection to external ...

  5. Maximum allowable operating pressure - Wikipedia

    en.wikipedia.org/wiki/Maximum_allowable...

    Maximum Allowable Operating Pressure (MAOP) is a pressure limit set, usually by a government body, which applies to compressed gas pressure vessels, pipelines, and storage tanks. For pipelines, this value is derived from Barlow's Formula , which takes into account wall thickness, diameter, allowable stress (which is a function of the material ...

  6. Roark's Formulas for Stress and Strain - Wikipedia

    en.wikipedia.org/wiki/Roark's_Formulas_for_Stress...

    Chapter 13 – Shells of Revolution; Pressure Vessels; Pipes Chapter 14 – Bodies in Contact Undergoing Direct Bearing and Shear Stress Chapter 15 – Elastic Stability Chapter 16 – Dynamic and Temperature Stresses Chapter 17 – Stress Concentration Factors Appendix A – Properties of a Plane Area Appendix B – Glossary

  7. Radial stress - Wikipedia

    en.wikipedia.org/wiki/Radial_stress

    The walls of pressure vessels generally undergo triaxial loading. For cylindrical pressure vessels, the normal loads on a wall element are longitudinal stress, circumferential (hoop) stress and radial stress. The radial stress for a thick-walled cylinder is equal and opposite to the gauge pressure on the inside surface, and zero on the outside ...

  8. EN 13445 - Wikipedia

    en.wikipedia.org/wiki/EN_13445

    EN 13445 - Unfired Pressure Vessels is a standard that provides rules for the design, fabrication, and inspection of pressure vessels. EN 13445 consists of 8 parts: EN 13445-1 : Unfired pressure vessels - Part 1: General; EN 13445-2 : Unfired pressure vessels - Part 2: Materials; EN 13445-3 : Unfired pressure vessels - Part 3: Design

  9. Souders–Brown equation - Wikipedia

    en.wikipedia.org/wiki/Souders–Brown_equation

    At a gauge pressure of 7 bar: 0.107 m/s; At a gauge pressure of 21 bar: 0.101 m/s; At a gauge pressure of 42 bar: 0.092 m/s; At a gauge pressure of 63 bar: 0.083 m/s; At a gauge pressure of 105 bar: 0.065 m/s; GPSA notes: k = 0.107 at a gauge pressure of 7 bar. Subtract 0.003 for every 7 bar above a gauge pressure of 7 bar.