Search results
Results from the WOW.Com Content Network
The proportionality factor is the dynamic viscosity of the fluid, often simply referred to as the viscosity. It is denoted by the Greek letter mu ( μ ). The dynamic viscosity has the dimensions ( m a s s / l e n g t h ) / t i m e {\displaystyle \mathrm {(mass/length)/time} } , therefore resulting in the SI units and the derived units :
The density is usually on the order of 1000 kg/m^3, i.e. that of water. Consequently, if a liquid has dynamic viscosity of n centiPoise, and its density is not too different from that of water, then its kinematic viscosity is around n centiStokes. For gas, the dynamic viscosity is usually in the range of 10 to 20 microPascal-seconds, or 0.01 to ...
Dimensionless numbers (or characteristic numbers) have an important role in analyzing the behavior of fluids and their flow as well as in other transport phenomena. [1] They include the Reynolds and the Mach numbers, which describe as ratios the relative magnitude of fluid and physical system characteristics, such as density, viscosity, speed of sound, and flow speed.
D is the mass diffusivity (m 2 /s). μ is the dynamic viscosity of the fluid (Pa·s = N·s/m 2 = kg/m·s) ρ is the density of the fluid (kg/m 3) Pe is the Peclet Number; Re is the Reynolds Number. The heat transfer analog of the Schmidt number is the Prandtl number (Pr). The ratio of thermal diffusivity to mass diffusivity is the Lewis number ...
where is the specific energy, is the specific volume, is the specific entropy, is the molecular mass, here is considered a constant (polytropic process), and can be shown to correspond to the heat capacity ratio. This equation can be shown to be consistent with the usual equations of state employed by thermodynamics.
It has dimensions (mass / (length × time)), and the corresponding SI unit is the pascal-second (Pa·s). Like other material properties (e.g. density, shear viscosity, and thermal conductivity) the value of volume viscosity is specific to each fluid and depends additionally on the fluid state, particularly its temperature and pressure.
ρ p is the density of the particles (kg/m 3), ρ f is the density of the fluid (kg/m 3), μ is the (dynamic) fluid viscosity (Pa·s). Note that Stokes flow is assumed, so the Reynolds number must be small. A limiting factor on the validity of this result is the roughness of the sphere being used.
How much the volume viscosity contributes to the flow characteristics in e.g. a choked flow such as convergent-divergent nozzle or valve flow is not well known, but the shear viscosity is by far the most utilized viscosity coefficient. The volume viscosity will now be abandoned, and the rest of the article will focus on the shear viscosity.