Search results
Results from the WOW.Com Content Network
In the long run, exponential growth of any kind will overtake linear growth of any kind (that is the basis of the Malthusian catastrophe) as well as any polynomial growth, that is, for all α: = There is a whole hierarchy of conceivable growth rates that are slower than exponential and faster than linear (in the long run).
r = the population growth rate, which Ronald Fisher called the Malthusian parameter of population growth in The Genetical Theory of Natural Selection, [2] and Alfred J. Lotka called the intrinsic rate of increase, [3] [4] t = time. The model can also be written in the form of a differential equation: =
RGR is a concept relevant in cases where the increase in a state variable over time is proportional to the value of that state variable at the beginning of a time period. In terms of differential equations, if is the current size, and its growth rate, then relative growth rate is =. If the RGR is constant, i.e., =, a solution to this equation is
For example, with an annual growth rate of 4.8% the doubling time is 14.78 years, and a doubling time of 10 years corresponds to a growth rate between 7% and 7.5% (actually about 7.18%). When applied to the constant growth in consumption of a resource, the total amount consumed in one doubling period equals the total amount consumed in all ...
We obtain: + = (+). This equation means that the sequence (N t) is geometric with first term N 0 and common ratio 1 + R, which we define to be λ. λ is also called the finite rate of increase. Therefore, by induction , we obtain the expression of the population size at time t : N t = λ t N 0 {\displaystyle N_{t}=\lambda ^{t}N_{0}} where λ t ...
First order LTI systems are characterized by the differential equation + = where τ represents the exponential decay constant and V is a function of time t = (). The right-hand side is the forcing function f(t) describing an external driving function of time, which can be regarded as the system input, to which V(t) is the response, or system output.
In the more common Schrödinger picture, even the states of free particles change over time: typically the phase changes at a rate that depends on their energy. In the alternative Heisenberg picture, state vectors are kept constant, at the price of having the operators (in particular the observables) be time-dependent. The interaction picture ...
Due to the nonlinearity in the equation and the presence of space-time white noise, solutions to the KPZ equation are known to not be smooth or regular, but rather 'fractal' or 'rough.' Even without the nonlinear term, the equation reduces to the stochastic heat equation , whose solution is not differentiable in the space variable but satisfies ...