enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Rocket engine nozzle - Wikipedia

    en.wikipedia.org/wiki/Rocket_engine_nozzle

    The gas flow is isentropic; i.e., at constant entropy, as the result of the assumption of non-viscous fluid, and adiabatic process. The gas flow rate is constant (i.e., steady) during the period of the propellant burn. The gas flow is non-turbulent and axisymmetric from gas inlet to exhaust gas exit (i.e., along the nozzle's axis of symmetry).

  3. Altitude compensating nozzle - Wikipedia

    en.wikipedia.org/wiki/Altitude_compensating_nozzle

    Grossly overexpanded nozzles have improved efficiency, but the exhaust jet is unstable. Conventional nozzles become progressively more underexpanded as they gain altitude. [1] The basic concept of any engine bell is to efficiently direct the flow of exhaust gases from the rocket engine into one direction.

  4. Isentropic nozzle flow - Wikipedia

    en.wikipedia.org/wiki/Isentropic_Nozzle_Flow

    A supersonic flow that is turned while there is an increase in flow area is also isentropic. Since there is an increase in area, therefore we call this an isentropic expansion. If a supersonic flow is turned abruptly and the flow area decreases, the flow is irreversible due to the generation of shock waves.

  5. de Laval nozzle - Wikipedia

    en.wikipedia.org/wiki/De_Laval_nozzle

    Diagram of a de Laval nozzle, showing approximate flow velocity (v), together with the effect on temperature (T) and pressure (p) A de Laval nozzle (or convergent-divergent nozzle, CD nozzle or con-di nozzle) is a tube which is pinched in the middle, with a rapid convergence and gradual divergence.

  6. Euler equations (fluid dynamics) - Wikipedia

    en.wikipedia.org/wiki/Euler_equations_(fluid...

    For certain problems, especially when used to analyze compressible flow in a duct or in case the flow is cylindrically or spherically symmetric, the one-dimensional Euler equations are a useful first approximation. Generally, the Euler equations are solved by Riemann's method of characteristics.

  7. Fluid dynamics - Wikipedia

    en.wikipedia.org/wiki/Fluid_dynamics

    A flow that is not a function of time is called steady flow. Steady-state flow refers to the condition where the fluid properties at a point in the system do not change over time. Time dependent flow is known as unsteady (also called transient [8]). Whether a particular flow is steady or unsteady, can depend on the chosen frame of reference.

  8. Flow (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Flow_(mathematics)

    It is very common in many fields, including engineering, physics and the study of differential equations, to use a notation that makes the flow implicit. Thus, x ( t ) is written for ⁠ φ t ( x 0 ) , {\displaystyle \varphi ^{t}(x_{0}),} ⁠ and one might say that the variable x depends on the time t and the initial condition x = x 0 .

  9. Incompressible flow - Wikipedia

    en.wikipedia.org/wiki/Incompressible_flow

    Anelastic flow: () =. Principally used in the field of atmospheric sciences, the anelastic constraint extends incompressible flow validity to stratified density and/or temperature as well as pressure. This allows the thermodynamic variables to relax to an 'atmospheric' base state seen in the lower atmosphere when used in the field of ...