Search results
Results from the WOW.Com Content Network
In chemistry, the molar mass (M) (sometimes called molecular weight or formula weight, but see related quantities for usage) of a chemical compound is defined as the ratio between the mass and the amount of substance (measured in moles) of any sample of the compound. [1] The molar mass is a bulk, not molecular, property of a substance.
Equivalent weights may be calculated from molar masses if the chemistry of the substance is well known: sulfuric acid has a molar mass of 98.078(5) g mol −1, and supplies two moles of hydrogen ions per mole of sulfuric acid, so its equivalent weight is 98.078(5) g mol −1 /2 eq mol −1 = 49.039(3) g eq −1.
Atomic number Element Molar mass Formal standard atomic weight s.a.w., formal short Note Z calculated; g·mol −1 A r, standard [2] A r, abridged and conventional [2]; C 9 H 8 O 4: 180.159 g·mol −1
The molecular mass and relative molecular mass are distinct from but related to the molar mass. The molar mass is defined as the mass of a given substance divided by the amount of the substance , and is expressed in grams per mol (g/mol).
It is the lightest element and, at standard conditions, is a gas of diatomic molecules with the formula H 2, sometimes called dihydrogen, [11] hydrogen gas, molecular hydrogen, or simply hydrogen. It is colorless, odorless, [ 12 ] non-toxic, and highly combustible .
Molecular weight (MW) Valencies (V) Sample Reference Elemental mEq Elemental mEq to compound weight Potassium (reference) K 39.098 g/mol 1 (K +) 20 mEq potassium 20*39.098/1=782 mg Potassium citrate monohydrate C 6 H 7 K 3 O 8: 324.41 g/mol 3 (K +) Liquid potassium citrate/gluconate therapy for adults and teenagers taken two to four times a day [3]
Each element has an atomic mass, and considering molecules as collections of atoms, compounds have a definite molecular mass, which when expressed in daltons is numerically equal to the molar mass in g/mol. By definition, the atomic mass of carbon-12 is 12 Da, giving a molar mass of 12 g/mol.
One can calculate the molecular mass of a compound by adding the atomic masses (not the standard atomic weights) of its constituent atoms. Conversely, the molar mass is usually computed from the standard atomic weights (not the atomic or nuclide masses). Thus, molecular mass and molar mass differ slightly in numerical value and represent ...