enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Harmonic mean - Wikipedia

    en.wikipedia.org/wiki/Harmonic_mean

    The harmonic mean is the reciprocal of the arithmetic mean of the reciprocals of the numbers, that is, the generalized f-mean with () =. For example, the harmonic mean of 1, 4, and 4 is For example, the harmonic mean of 1, 4, and 4 is

  3. Harmonic progression (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Harmonic_progression...

    In mathematics, a harmonic progression (or harmonic sequence) is a progression formed by taking the reciprocals of an arithmetic progression, which is also known as an arithmetic sequence. Equivalently, a sequence is a harmonic progression when each term is the harmonic mean of the neighboring terms.

  4. Harmonic number - Wikipedia

    en.wikipedia.org/wiki/Harmonic_number

    The harmonic number with = ⌊ ⌋ (red line) with its asymptotic limit + ⁡ (blue line) where is the Euler–Mascheroni constant.. In mathematics, the n-th harmonic number is the sum of the reciprocals of the first n natural numbers: [1] = + + + + = =.

  5. List of sums of reciprocals - Wikipedia

    en.wikipedia.org/wiki/List_of_sums_of_reciprocals

    The sum of the reciprocals of the powerful numbers is close to 1.9436 . [4] The reciprocals of the factorials sum to the transcendental number e (one of two constants called "Euler's number"). The sum of the reciprocals of the square numbers (the Basel problem) is the transcendental number ⁠ π 2 / 6 ⁠, or ζ(2) where ζ is the Riemann zeta ...

  6. Harmonic series (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Harmonic_series_(mathematics)

    [1] [2] Every term of the harmonic series after the first is the harmonic mean of the neighboring terms, so the terms form a harmonic progression; the phrases harmonic mean and harmonic progression likewise derive from music. [2] Beyond music, harmonic sequences have also had a certain popularity with architects.

  7. QM-AM-GM-HM inequalities - Wikipedia

    en.wikipedia.org/wiki/QM-AM-GM-HM_Inequalities

    In mathematics, the QM-AM-GM-HM inequalities, also known as the mean inequality chain, state the relationship between the harmonic mean, geometric mean, arithmetic mean, and quadratic mean (also known as root mean square). Suppose that ,, …, are positive real numbers. Then

  8. Geometric–harmonic mean - Wikipedia

    en.wikipedia.org/wiki/Geometric–harmonic_mean

    In mathematics, the geometric–harmonic mean M(x, y) of two positive real numbers x and y is defined as follows: we form the geometric mean of g 0 = x and h 0 = y and call it g 1, i.e. g 1 is the square root of xy. We also form the harmonic mean of x and y and call it h 1, i.e. h 1 is the reciprocal of the arithmetic mean of the reciprocals of ...

  9. Pythagorean means - Wikipedia

    en.wikipedia.org/wiki/Pythagorean_means

    The study of the Pythagorean means is closely related to the study of majorization and Schur-convex functions. The harmonic and geometric means are concave symmetric functions of their arguments, and hence Schur-concave, while the arithmetic mean is a linear function of its arguments and hence is both concave and convex.