Search results
Results from the WOW.Com Content Network
Anatoli Petrovich Bugorski (Russian: Анатолий Петрович Бугорский; born 25 June 1942) is a Russian retired particle physicist. He is known for surviving a radiation accident in 1978, when a high-energy proton beam from a particle accelerator passed through his head. [1] [2]
In string theory, believed by some to be a consistent theory of quantum gravity, the graviton is a massless state of a fundamental string. If it exists, the graviton is expected to be massless because the gravitational force has a very long range, and appears to propagate at the speed of light.
Newton's law was later superseded by Albert Einstein's theory of general relativity, but the universality of the gravitational constant is intact and the law still continues to be used as an excellent approximation of the effects of gravity in most applications.
Whitehead developed his theory of gravitation by considering how the world line of a particle is affected by those of nearby particles. He arrived at an expression for what he called the "potential impetus" of one particle due to another, which modified Newton's law of universal gravitation by including a time delay for the propagation of gravitational influences.
Gravity is one of the universe's fundamental forces. Einstein's theory linked space, time and gravity. It holds that concentrations of mass and energy curve the structure of space-time ...
In what is called the second superstring revolution, it was conjectured that both string theory and a unification of general relativity and supersymmetry known as supergravity [199] form part of a hypothesized eleven-dimensional model known as M-theory, which would constitute a uniquely defined and consistent theory of quantum gravity. [200]
The theory posits that the force of gravity is the result of tiny particles (corpuscles) moving at high speed in all directions, throughout the universe.The intensity of the flux of particles is assumed to be the same in all directions, so an isolated object A is struck equally from all sides, resulting in only an inward-directed pressure but no net directional force (P1).
While trying to develop a mathematical theory of light which would fully encompass its wavelike and particle-like aspects, Einstein developed the concept of "ghost fields". A guiding wave obeying Maxwell's classical laws would propagate following the normal laws of optics, but would not transmit any energy.