Search results
Results from the WOW.Com Content Network
In computer science, cycle detection or cycle finding is the algorithmic problem of finding a cycle in a sequence of iterated function values.. For any function f that maps a finite set S to itself, and any initial value x 0 in S, the sequence of iterated function values
The problem addressed by the circle method is to force the issue of taking r = 1, by a good understanding of the nature of the singularities f exhibits on the unit circle. The fundamental insight is the role played by the Farey sequence of rational numbers, or equivalently by the roots of unity :
Turtle graphics are often associated with the Logo programming language. [2] Seymour Papert added support for turtle graphics to Logo in the late 1960s to support his version of the turtle robot, a simple robot controlled from the user's workstation that is designed to carry out the drawing functions assigned to it using a small retractable pen set into or attached to the robot's body.
A more computationally complex method that detects escapes sooner, is to compute distance from the origin using the Pythagorean theorem, i.e., to determine the absolute value, or modulus, of the complex number. If this value exceeds 2, or equivalently, when the sum of the squares of the real and imaginary parts exceed 4, the point has reached ...
A circle of radius 23 drawn by the Bresenham algorithm. In computer graphics, the midpoint circle algorithm is an algorithm used to determine the points needed for rasterizing a circle. It is a generalization of Bresenham's line algorithm. The algorithm can be further generalized to conic sections. [1] [2] [3]
The first working Logo turtle robot was created in 1969. A display turtle preceded the physical floor turtle. Modern Logo has not changed very much from the basic concepts predating the first turtle. The first turtle was a tethered floor roamer, not radio-controlled or wireless. At BBN Paul Wexelblat developed a turtle named Irving that had ...
Robot in a wooden maze. A maze-solving algorithm is an automated method for solving a maze.The random mouse, wall follower, Pledge, and Trémaux's algorithms are designed to be used inside the maze by a traveler with no prior knowledge of the maze, whereas the dead-end filling and shortest path algorithms are designed to be used by a person or computer program that can see the whole maze at once.
For example, the center of a circle moves by the same amount as the circle when shifted. [6] A nonequivariant is a property whose value does not change predictably under a transformation. For example, transforming a circle into an ellipse means that its perimeter can no longer be computed as π times the diameter.