enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. List of sums of reciprocals - Wikipedia

    en.wikipedia.org/wiki/List_of_sums_of_reciprocals

    The sum of the reciprocals of the powerful numbers is close to 1.9436 . [4] The reciprocals of the factorials sum to the transcendental number e (one of two constants called "Euler's number"). The sum of the reciprocals of the square numbers (the Basel problem) is the transcendental number ⁠ π 2 / 6 ⁠, or ζ(2) where ζ is the Riemann zeta ...

  3. Harmonic number - Wikipedia

    en.wikipedia.org/wiki/Harmonic_number

    The harmonic number with = ⌊ ⌋ (red line) with its asymptotic limit + ⁡ (blue line) where is the Euler–Mascheroni constant.. In mathematics, the n-th harmonic number is the sum of the reciprocals of the first n natural numbers: [1] = + + + + = =.

  4. Sums of powers - Wikipedia

    en.wikipedia.org/wiki/Sums_of_powers

    A taxicab number is the smallest integer that can be expressed as a sum of two positive third powers in n distinct ways. The Riemann zeta function is the sum of the reciprocals of the positive integers each raised to the power s, where s is a complex number whose real part is greater than 1.

  5. Divergence of the sum of the reciprocals of the primes

    en.wikipedia.org/wiki/Divergence_of_the_sum_of...

    While the partial sums of the reciprocals of the primes eventually exceed any integer value, they never equal an integer. One proof [6] is by induction: The first partial sum is ⁠ 1 / 2 ⁠, which has the form ⁠ odd / even ⁠. If the n th partial sum (for n ≥ 1) has the form ⁠ odd / even ⁠, then the (n + 1) st sum is

  6. Meissel–Mertens constant - Wikipedia

    en.wikipedia.org/wiki/Meissel–Mertens_constant

    In the limit, the sum of the reciprocals of the primes < n and the function ln(ln n) are separated by a constant, the Meissel–Mertens constant (labelled M above). The Meissel-Mertens constant (named after Ernst Meissel and Franz Mertens), also referred to as the Mertens constant, Kronecker's constant, Hadamard-de la Vallée-Poussin constant, or the prime reciprocal constant, is a ...

  7. Harmonic progression (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Harmonic_progression...

    It is not possible for a harmonic progression of distinct unit fractions (other than the trivial case where a = 1 and k = 0) to sum to an integer. The reason is that, necessarily, at least one denominator of the progression will be divisible by a prime number that does not divide any other denominator.

  8. Erdős conjecture on arithmetic progressions - Wikipedia

    en.wikipedia.org/wiki/Erdős_conjecture_on...

    Because the sum of the reciprocals of the primes diverges, the Green–Tao theorem on arithmetic progressions is a special case of the conjecture. The weaker claim that A must contain infinitely many arithmetic progressions of length 3 is a consequence of an improved bound in Roth's theorem .

  9. Reciprocals of primes - Wikipedia

    en.wikipedia.org/wiki/Reciprocals_of_primes

    Rules for calculating the periods of repeating decimals from rational fractions were given by James Whitbread Lee Glaisher in 1878. [5] For a prime p, the period of its reciprocal divides p − 1. [6] The sequence of recurrence periods of the reciprocal primes (sequence A002371 in the OEIS) appears in the 1973 Handbook of Integer Sequences.