Search results
Results from the WOW.Com Content Network
The Viola–Jones object detection framework is a machine learning object detection framework proposed in 2001 by Paul Viola and Michael Jones. [1] [2] It was motivated primarily by the problem of face detection, although it can be adapted to the detection of other object classes. In short, it consists of a sequence of classifiers.
FaceNet is a facial recognition system developed by Florian Schroff, Dmitry Kalenichenko and James Philbina, a group of researchers affiliated with Google.The system was first presented at the 2015 IEEE Conference on Computer Vision and Pattern Recognition. [1]
The Face Recognition Grand Challenge (May 2004 to March 2006) aimed to promote and advance face recognition technology. [12] The American Meteorological Society's artificial intelligence competition involves learning a classifier to characterise precipitation based on meteorological analyses of environmental conditions and polarimetric radar ...
Classification, face recognition 2011 [91] [92] M. Grgic et al. Yale Face Database Faces of 15 individuals in 11 different expressions. Labels of expressions. 165 Images Face recognition 1997 [93] [94] J. Yang et al. Cohn-Kanade AU-Coded Expression Database Large database of images with labels for expressions. Tracking of certain facial features.
Region-based Convolutional Neural Networks (R-CNN) are a family of machine learning models for computer vision, and specifically object detection and localization. [1] The original goal of R-CNN was to take an input image and produce a set of bounding boxes as output, where each bounding box contains an object and also the category (e.g. car or ...
The position of these rectangles is defined relative to a detection window that acts like a bounding box to the target object (the face in this case). In the detection phase of the Viola–Jones object detection framework, a window of the target size is moved over the input image, and for each subsection of the image the Haar-like feature is ...
Kaggle is a data science competition platform and online community for data scientists and machine learning practitioners under Google LLC.Kaggle enables users to find and publish datasets, explore and build models in a web-based data science environment, work with other data scientists and machine learning engineers, and enter competitions to solve data science challenges.
Some projects use adversarial machine learning to come up with new printed patterns that confuse existing face recognition software. [246] One method that may work to protect from facial recognition systems are specific haircuts and make-up patterns that prevent the used algorithms to detect a face, known as computer vision dazzle. [238]