enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Symmetric group - Wikipedia

    en.wikipedia.org/wiki/Symmetric_group

    A Cayley graph of the symmetric group S 4 using the generators (red) a right circular shift of all four set elements, and (blue) a left circular shift of the first three set elements. Cayley table, with header omitted, of the symmetric group S 3. The elements are represented as matrices. To the left of the matrices, are their two-line form.

  3. Representation theory of the symmetric group - Wikipedia

    en.wikipedia.org/wiki/Representation_theory_of...

    Every symmetric group has a one-dimensional representation called the trivial representation, where every element acts as the one by one identity matrix. For n ≥ 2 , there is another irreducible representation of degree 1, called the sign representation or alternating character , which takes a permutation to the one by one matrix with entry ...

  4. Dihedral group of order 6 - Wikipedia

    en.wikipedia.org/wiki/Dihedral_group_of_order_6

    Only the neutral elements are symmetric to the main diagonal, so this group is not abelian. Cayley table as general (and special) linear group GL(2, 2) In mathematics, D 3 (sometimes alternatively denoted by D 6) is the dihedral group of degree 3 and order 6. It equals the symmetric group S 3. It is also the smallest non-abelian group. [1]

  5. Automorphisms of the symmetric and alternating groups

    en.wikipedia.org/wiki/Automorphisms_of_the...

    For every symmetric group other than S 6, there is no other conjugacy class consisting of elements of order 2 that has the same number of elements as the class of transpositions. Or as follows: Each permutation of order two (called an involution ) is a product of k > 0 disjoint transpositions, so that it has cyclic structure 2 k 1 n −2 k .

  6. Point groups in three dimensions - Wikipedia

    en.wikipedia.org/wiki/Point_groups_in_three...

    D nh is the symmetry group for a "regular" n-gonal prism and also for a "regular" n-gonal bipyramid. D nd is the symmetry group for a "regular" n-gonal antiprism, and also for a "regular" n-gonal trapezohedron. D n is the symmetry group of a partially rotated ("twisted") prism. The groups D 2 and D 2h are noteworthy in that there is no special ...

  7. Dynkin diagram - Wikipedia

    en.wikipedia.org/wiki/Dynkin_diagram

    In all these cases except for D 4, there is a single non-trivial automorphism (Out = C 2, the cyclic group of order 2), while for D 4, the automorphism group is the symmetric group on three letters (S 3, order 6) – this phenomenon is known as "triality". It happens that all these diagram automorphisms can be realized as Euclidean symmetries ...

  8. Permutation group - Wikipedia

    en.wikipedia.org/wiki/Permutation_group

    The group of all permutations of a set M is the symmetric group of M, often written as Sym(M). [1] The term permutation group thus means a subgroup of the symmetric group. If M = {1, 2, ..., n} then Sym(M) is usually denoted by S n, and may be called the symmetric group on n letters. By Cayley's theorem, every group is isomorphic to some ...

  9. Covering groups of the alternating and symmetric groups

    en.wikipedia.org/wiki/Covering_groups_of_the...

    The alternating group, symmetric group, and their double covers are related in this way, and have orthogonal representations and covering spin/pin representations in the corresponding diagram of orthogonal and spin/pin groups. Explicitly, S n acts on the n-dimensional space R n by permuting coordinates (in matrices, as permutation matrices).