Search results
Results from the WOW.Com Content Network
In arithmetic and algebra, the fifth power or sursolid [1] of a number n is the result of multiplying five instances of n together: n 5 = n × n × n × n × n . Fifth powers are also formed by multiplying a number by its fourth power , or the square of a number by its cube .
Zero to the power of zero, denoted as 0 0, is a mathematical expression that can take different values depending on the context. In certain areas of mathematics, such as combinatorics and algebra , 0 0 is conventionally defined as 1 because this assignment simplifies many formulas and ensures consistency in operations involving exponents .
If two divisions are done, a multiple of 5 · 5=25 rather than 5 must be used, because 25 can be divided by 5 twice. So the number of coconuts that could be in the pile is k · 25 – 4. k =1 yielding 21 is the smallest positive number that can be successively divided by 5 twice with remainder 1.
[14] [15] It is said to be an improper fraction, or sometimes top-heavy fraction, [16] if the absolute value of the fraction is greater than or equal to 1. Examples of proper fractions are 2/3, −3/4, and 4/9, whereas examples of improper fractions are 9/4, −4/3, and 3/3.
The majority of Mesopotamian clay tablets date from 1800 to 1600 BC, and cover topics which include fractions, algebra, quadratic and cubic equations, and the calculation of regular numbers, reciprocals, and pairs. [10] The tablets also include multiplication tables and methods for solving linear and quadratic equations.
In algebra, the partial fraction decomposition or partial fraction expansion of a rational fraction (that is, a fraction such that the numerator and the denominator are both polynomials) is an operation that consists of expressing the fraction as a sum of a polynomial (possibly zero) and one or several fractions with a simpler denominator. [1]
From that its peripheral circle comes to be equal to thirty thousand yojanas. — "verses: 6.12.40–45, Bhishma Parva of the Mahabharata " In the 3rd century BCE, Archimedes proved the sharp inequalities 223 ⁄ 71 < π < 22 ⁄ 7 , by means of regular 96-gons (accuracies of 2·10 −4 and 4·10 −4 , respectively).
5 + 5 → 0, carry 1 (since 5 + 5 = 10 = 0 + (1 × 10 1) ) 7 + 9 → 6, carry 1 (since 7 + 9 = 16 = 6 + (1 × 10 1) ) This is known as carrying. When the result of an addition exceeds the value of a digit, the procedure is to "carry" the excess amount divided by the radix (that is, 10/10) to the left, adding it to the next positional value.