Search results
Results from the WOW.Com Content Network
Argon constitutes 0.934% by volume and 1.288% by mass of Earth's atmosphere. [23] Air is the primary industrial source of purified argon products. Argon is isolated from air by fractionation, most commonly by cryogenic fractional distillation, a process that also produces purified nitrogen, oxygen, neon, krypton and xenon. [24] Earth's crust ...
Total atmospheric mass is 5.1480 × 10 18 kg (1.13494 × 10 19 lb), [36] about 2.5% less than would be inferred from the average sea-level pressure and Earth's area of 51007.2 megahectares, this portion being displaced by Earth's mountainous terrain. Atmospheric pressure is the total weight of the air above unit area at the point where the ...
At the 60th parallel, the air rises to the tropopause (about 8 km at this latitude) and moves poleward. As it does so, the upper-level air mass deviates toward the east. When the air reaches the polar areas, it has cooled by radiation to space and is considerably denser than the underlying air. It descends, creating a cold, dry high-pressure area.
A stellar atmosphere is the outer region of a star, which includes the layers above the opaque photosphere; stars of low temperature might have outer atmospheres containing compound molecules. The atmosphere of Earth is composed of nitrogen (78%), oxygen (21%), argon (0.9%), carbon dioxide (0.04%) and trace gases. [2]
Atmospheric chemistry is a branch of atmospheric science that studies the chemistry of the Earth's atmosphere and that of other planets. This multidisciplinary approach of research draws on environmental chemistry, physics, meteorology, computer modeling, oceanography, geology and volcanology, climatology and other disciplines to understand both natural and human-induced changes in atmospheric ...
The density of air or atmospheric density, denoted ρ, [1] is the mass per unit volume of Earth's atmosphere. Air density, like air pressure, decreases with increasing altitude. It also changes with variations in atmospheric pressure, temperature and humidity.
Atmospheric thermodynamics is the study of heat-to-work transformations (and their reverse) that take place in the Earth's atmosphere and manifest as weather or climate. . Atmospheric thermodynamics use the laws of classical thermodynamics, to describe and explain such phenomena as the properties of moist air, the formation of clouds, atmospheric convection, boundary layer meteorology, and ...
Rare gases is another term that was used, [7] but this is also inaccurate because argon forms a fairly considerable part (0.94% by volume, 1.3% by mass) of the Earth's atmosphere due to decay of radioactive potassium-40. [8] Helium was first detected in the Sun due to its characteristic spectral lines.