enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Greedy algorithm - Wikipedia

    en.wikipedia.org/wiki/Greedy_algorithm

    The matching pursuit is an example of a greedy algorithm applied on signal approximation. A greedy algorithm finds the optimal solution to Malfatti's problem of finding three disjoint circles within a given triangle that maximize the total area of the circles; it is conjectured that the same greedy algorithm is optimal for any number of circles.

  3. Kruskal's algorithm - Wikipedia

    en.wikipedia.org/wiki/Kruskal's_algorithm

    Kruskal's algorithm [1] finds a minimum spanning forest of an undirected edge-weighted graph.If the graph is connected, it finds a minimum spanning tree.It is a greedy algorithm that in each step adds to the forest the lowest-weight edge that will not form a cycle. [2]

  4. Greedoid - Wikipedia

    en.wikipedia.org/wiki/Greedoid

    A greedy algorithm is optimal for every R-compatible linear objective function over a greedoid. The intuition behind this proposition is that, during the iterative process, each optimal exchange of minimum weight is made possible by the exchange property, and optimal results are obtainable from the feasible sets in the underlying greedoid.

  5. Change-making problem - Wikipedia

    en.wikipedia.org/wiki/Change-making_problem

    Another example is attempting to make 40 US cents without nickels (denomination 25, 10, 1) with similar result — the greedy chooses seven coins (25, 10, and 5 × 1), but the optimal is four (4 × 10). A coin system is called "canonical" if the greedy algorithm always solves its change-making problem optimally.

  6. Optimal substructure - Wikipedia

    en.wikipedia.org/wiki/Optimal_substructure

    Typically, a greedy algorithm is used to solve a problem with optimal substructure if it can be proven by induction that this is optimal at each step. [1] Otherwise, provided the problem exhibits overlapping subproblems as well, divide-and-conquer methods or dynamic programming may be used.

  7. Assignment problem - Wikipedia

    en.wikipedia.org/wiki/Assignment_problem

    This algorithm may yield a non-optimal solution. For example, suppose there are two tasks and two agents with costs as follows: Alice: Task 1 = 1, Task 2 = 2. George: Task 1 = 5, Task 2 = 8. The greedy algorithm would assign Task 1 to Alice and Task 2 to George, for a total cost of 9; but the reverse assignment has a total cost of 7.

  8. Longest-processing-time-first scheduling - Wikipedia

    en.wikipedia.org/wiki/Longest-processing-time...

    Longest-processing-time-first (LPT) is a greedy algorithm for job scheduling. The input to the algorithm is a set of jobs, each of which has a specific processing-time. There is also a number m specifying the number of machines that can process the jobs. The LPT algorithm works as follows:

  9. Beam search - Wikipedia

    en.wikipedia.org/wiki/Beam_search

    Conversely, a beam width of 1 corresponds to a hill-climbing algorithm. [3] The beam width bounds the memory required to perform the search. Since a goal state could potentially be pruned, beam search sacrifices completeness (the guarantee that an algorithm will terminate with a solution, if one exists).