Search results
Results from the WOW.Com Content Network
In astronomy, dark matter is a hypothetical form of matter that does not interact with light or other electromagnetic radiation.Dark matter is implied by gravitational effects which cannot be explained by general relativity unless more matter is present than can be observed.
Dark matter is called ‘dark’ because it’s invisible to us and does not measurably interact with anything other than gravity. It could be interspersed between the atoms that make up the Earth ...
The Large Underground Xenon experiment (LUX) aimed to directly detect weakly interacting massive particle (WIMP) dark matter interactions with ordinary matter on Earth. . Despite the wealth of (gravitational) evidence supporting the existence of non-baryonic dark matter in the Universe, [1] dark matter particles in our galaxy have never been directly detected in an expe
Direct detection of dark matter is the science of attempting to directly measure dark matter collisions in Earth-based experiments. Modern astrophysical measurements, such as from the Cosmic Microwave Background , strongly indicate that 85% of the matter content of the universe is unaccounted for. [ 1 ]
The universe's contents include ordinary matter - stars, planets, gas, dust and all the familiar stuff on Earth, including people and popcorn - as well as dark matter, which is invisible material ...
The modern (perturbative) quantum mechanical view of the fundamental forces other than gravity is that particles of matter do not directly interact with each other, but rather carry a charge, and exchange virtual particles (gauge bosons), which are the interaction carriers or force mediators.
Collisionless: Dark matter particles interact with each other and other particles only through gravity and possibly the weak force; Dark matter constitutes about 26.5 % [12] of the mass–energy density of the universe.
Gravitational wave astronomy helps understand the early universe, test theories of gravity, and reveal the distribution of dark matter and dark energy. Particularly, it can help find the Hubble constant, which tells about the rate of accelerated expansion of the universe. All of these open doors to a physics beyond the Standard Model (BSM).