enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. A* search algorithm - Wikipedia

    en.wikipedia.org/wiki/A*_search_algorithm

    The algorithm continues until a removed node (thus the node with the lowest f value out of all fringe nodes) is a goal node. [b] The f value of that goal is then also the cost of the shortest path, since h at the goal is zero in an admissible heuristic. The algorithm described so far only gives the length of the shortest path.

  3. Search algorithm - Wikipedia

    en.wikipedia.org/wiki/Search_algorithm

    Specific applications of search algorithms include: Problems in combinatorial optimization, such as: . The vehicle routing problem, a form of shortest path problem; The knapsack problem: Given a set of items, each with a weight and a value, determine the number of each item to include in a collection so that the total weight is less than or equal to a given limit and the total value is as ...

  4. General Problem Solver - Wikipedia

    en.wikipedia.org/wiki/General_Problem_Solver

    Put another way, the number of "walks" through the inferential digraph became computationally untenable. (In practice, even a straightforward state space search such as the Towers of Hanoi can become computationally infeasible, albeit judicious prunings of the state space can be achieved by such elementary AI techniques as A* and IDA*).

  5. Admissible heuristic - Wikipedia

    en.wikipedia.org/wiki/Admissible_heuristic

    In computer science, specifically in algorithms related to pathfinding, a heuristic function is said to be admissible if it never overestimates the cost of reaching the goal, i.e. the cost it estimates to reach the goal is not higher than the lowest possible cost from the current point in the path. [1]

  6. Iterative deepening A* - Wikipedia

    en.wikipedia.org/wiki/Iterative_deepening_A*

    It is a variant of iterative deepening depth-first search that borrows the idea to use a heuristic function to conservatively estimate the remaining cost to get to the goal from the A* search algorithm. Since it is a depth-first search algorithm, its memory usage is lower than in A*, but unlike ordinary iterative deepening search, it ...

  7. Heuristic (computer science) - Wikipedia

    en.wikipedia.org/wiki/Heuristic_(computer_science)

    In such search problems, a heuristic can be used to try good choices first so that bad paths can be eliminated early (see alpha–beta pruning). In the case of best-first search algorithms, such as A* search, the heuristic improves the algorithm's convergence while maintaining its correctness as long as the heuristic is admissible.

  8. Best-first search - Wikipedia

    en.wikipedia.org/wiki/Best-first_search

    Best-first search is a class of search algorithms which explores a graph by expanding the most promising node chosen according to a specified rule.. Judea Pearl described best-first search as estimating the promise of node n by a "heuristic evaluation function () which, in general, may depend on the description of n, the description of the goal, the information gathered by the search up to ...

  9. Nearest neighbor search - Wikipedia

    en.wikipedia.org/wiki/Nearest_neighbor_search

    The basic algorithm – greedy search – works as follows: search starts from an enter-point vertex by computing the distances from the query q to each vertex of its neighborhood {: (,)}, and then finds a vertex with the minimal distance value. If the distance value between the query and the selected vertex is smaller than the one between the ...