Search results
Results from the WOW.Com Content Network
Gravitational collapse of a massive star, resulting in a Type II supernova. Gravitational collapse is the contraction of an astronomical object due to the influence of its own gravity, which tends to draw matter inward toward the center of gravity. [1] Gravitational collapse is a fundamental mechanism for structure formation in the universe.
Simulated collision of two neutron stars. A stellar collision is the coming together of two stars [1] caused by stellar dynamics within a star cluster, or by the orbital decay of a binary star due to stellar mass loss or gravitational radiation, or by other mechanisms not yet well understood.
It would arise when a star "in the transitional range (~8 to 10 solar masses) between white dwarf formation and iron core-collapse supernovae", and with a degenerate O+Ne+Mg core, [139] imploded after its core ran out of nuclear fuel, causing gravity to compress the electrons in the star's core into their atomic nuclei, [140] [141] leading to a ...
Estimates range from 10,000 years to a maximum of 140,000 years. Betelgeuse appears to undergo short periods of heavy mass loss and is a runaway star moving rapidly through space, so comparisons of its current mass loss to the total lost mass are difficult. [18] [98]
The angular momentum of a stellar black hole is due to the conservation of angular momentum of the star or objects that produced it. The gravitational collapse of a star is a natural process that can produce a black hole. It is inevitable at the end of the life of a massive star when all stellar energy sources are exhausted.
The W51 nebula in Aquila - one of the largest star factories in the Milky Way (August 25, 2020). Star formation is the process by which dense regions within molecular clouds in interstellar space, sometimes referred to as "stellar nurseries" or "star-forming regions", collapse and form stars. [1]
In these stars, the first time that conditions support pair production instability, the situation runs out of control. The collapse proceeds to efficiently compress the star's core; the overpressure is sufficient to allow runaway nuclear fusion to burn it in several seconds, creating a thermonuclear explosion. [5]
A collapsar (a portmanteau word formed by "collapsed" + "star") is a star which has undergone gravitational collapse. [1] When a star no longer has enough fuel for significant fusion reactions, there are three possible outcomes, depending on the remnant star's mass: If it is less than the Chandrasekhar limit (1.4 solar masses), the star will ...