enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Multiclass classification - Wikipedia

    en.wikipedia.org/wiki/Multiclass_classification

    Hierarchical classification tackles the multi-class classification problem by dividing the output space i.e. into a tree. Each parent node is divided into multiple child nodes and the process is continued until each child node represents only one class. Several methods have been proposed based on hierarchical classification.

  3. Training, validation, and test data sets - Wikipedia

    en.wikipedia.org/wiki/Training,_validation,_and...

    A test data set is a data set that is independent of the training data set, but that follows the same probability distribution as the training data set. If a model fit to the training data set also fits the test data set well, minimal overfitting has taken place (see figure below). A better fitting of the training data set as opposed to the ...

  4. Multilevel model - Wikipedia

    en.wikipedia.org/wiki/Multilevel_model

    However, the test can only be used when models are nested (meaning that a more complex model includes all of the effects of a simpler model). When testing non-nested models, comparisons between models can be made using the Akaike information criterion (AIC) or the Bayesian information criterion (BIC), among others. [1] [2] [5] See further Model ...

  5. Mixture of experts - Wikipedia

    en.wikipedia.org/wiki/Mixture_of_experts

    Hierarchical mixtures of experts [7] [8] uses multiple levels of gating in a tree. Each gating is a probability distribution over the next level of gatings, and the ...

  6. Predictive coding - Wikipedia

    en.wikipedia.org/wiki/Predictive_coding

    This makes predictive coding similar to some other models of hierarchical learning, such as Helmholtz machines and Deep belief networks, which however employ different learning algorithms. Thus, the dual use of prediction errors for both inference and learning is one of the defining features of predictive coding. [6]

  7. Bayesian hierarchical modeling - Wikipedia

    en.wikipedia.org/wiki/Bayesian_hierarchical_modeling

    Bayesian hierarchical modelling is a statistical model written in multiple levels (hierarchical form) that estimates the parameters of the posterior distribution using the Bayesian method. [1] The sub-models combine to form the hierarchical model, and Bayes' theorem is used to integrate them with the observed data and account for all the ...

  8. Empirical Bayes method - Wikipedia

    en.wikipedia.org/wiki/Empirical_Bayes_method

    Empirical Bayes methods can be seen as an approximation to a fully Bayesian treatment of a hierarchical Bayes model.. In, for example, a two-stage hierarchical Bayes model, observed data = {,, …,} are assumed to be generated from an unobserved set of parameters = {,, …,} according to a probability distribution ().

  9. Hierarchical classification - Wikipedia

    en.wikipedia.org/wiki/Hierarchical_classification

    Hierarchical classification is a system of grouping things according to a hierarchy. [ 1 ] In the field of machine learning , hierarchical classification is sometimes referred to as instance space decomposition , [ 2 ] which splits a complete multi-class problem into a set of smaller classification problems.