enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Involutory matrix - Wikipedia

    en.wikipedia.org/wiki/Involutory_matrix

    An involution is non-defective, and each eigenvalue equals , so an involution diagonalizes to a signature matrix. A normal involution is Hermitian (complex) or symmetric (real) and also unitary (complex) or orthogonal (real). The determinant of an involutory matrix over any field is ±1. [4]

  3. Involution (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Involution_(mathematics)

    An involution is a function f : X → X that, when applied twice, brings one back to the starting point. In mathematics, an involution, involutory function, or self-inverse function [1] is a function f that is its own inverse, f(f(x)) = x. for all x in the domain of f. [2] Equivalently, applying f twice produces the original value.

  4. Affine involution - Wikipedia

    en.wikipedia.org/wiki/Affine_involution

    If A represents a linear involution, then x→A(x−b)+b is an affine involution. One can check that any affine involution in fact has this form. Geometrically this means that any affine involution can be obtained by taking oblique reflections against any number from 0 through n hyperplanes going through a point b.

  5. List of free PC games - Wikipedia

    en.wikipedia.org/wiki/List_of_free_PC_games

    The following is a list of PC games that have been deemed monetarily free by their creator or copyright holder. This includes free-to-play games, even if they include monetized micro transactions. List

  6. Binomial transform - Wikipedia

    en.wikipedia.org/wiki/Binomial_transform

    for the transformation, where T is an infinite-dimensional operator with matrix elements T nk. The transform is an involution, that is, = or, using index notation, = = where is the Kronecker delta. The original series can be regained by

  7. Cartan decomposition - Wikipedia

    en.wikipedia.org/wiki/Cartan_decomposition

    A Cartan involution on () is defined by () =, where denotes the transpose matrix of .; The identity map on is an involution. It is the unique Cartan involution of if and only if the Killing form of is negative definite or, equivalently, if and only if is the Lie algebra of a compact semisimple Lie group.

  8. Free semigroup with involution - Wikipedia

    en.wikipedia.org/wiki/Semigroup_with_involution

    An example from linear algebra is a set of real-valued n-by-n square matrices with the matrix-transpose as the involution. The map which sends a matrix to its transpose is an involution because the transpose is well defined for any matrix and obeys the law (AB) T = B T A T, which has the same form of interaction with multiplication as taking ...

  9. Self-adjoint - Wikipedia

    en.wikipedia.org/wiki/Self-adjoint

    Each positive element of a C*-algebra is self-adjoint. [3]For each element of a *-algebra, the elements and are self-adjoint, since * is an involutive antiautomorphism. [4] ...