Search results
Results from the WOW.Com Content Network
Exponentiation with negative exponents is defined by the following identity, which holds for any integer n and nonzero b: =. [1] Raising 0 to a negative exponent is undefined but, in some circumstances, it may be interpreted as infinity (). [24]
Euler's formula is ubiquitous in mathematics, physics, chemistry, and engineering. The physicist Richard Feynman called the equation "our jewel" and "the most remarkable formula in mathematics". [2] When x = π, Euler's formula may be rewritten as e iπ + 1 = 0 or e iπ = −1, which is known as Euler's identity.
And Paul Nahin, a professor emeritus at the University of New Hampshire, who has written a book dedicated to Euler's formula and its applications in Fourier analysis, describes Euler's identity as being "of exquisite beauty". [8] Mathematics writer Constance Reid has opined that Euler's identity is "the most famous formula in all mathematics". [9]
f is continuous at any one point (Rudin, 1976, chapter 8, exercise 6). f is increasing on any interval. For the uniqueness, one must impose some regularity condition, since other functions satisfying f ( x + y ) = f ( x ) f ( y ) {\displaystyle f(x+y)=f(x)f(y)} can be constructed using a basis for the real numbers over the rationals , as ...
Exponential functions with bases 2 and 1/2. In mathematics, the exponential function is the unique real function which maps zero to one and has a derivative equal to its value. . The exponential of a variable is denoted or , with the two notations used interchangeab
Two to the power of n, written as 2 n, is the number of values in which the bits in a binary word of length n can be set, where each bit is either of two values. A word, interpreted as representing an integer in a range starting at zero, referred to as an "unsigned integer", can represent values from 0 (000...000 2) to 2 n − 1 (111...111 2) inclusively.
In mathematics, the Laurent series of a complex function is a representation of that function as a power series which includes terms of negative degree. It may be used to express complex functions in cases where a Taylor series expansion cannot be applied.
Φ 8 (z) = (z 8 − 1)⋅(z 4 − 1) −1 = z 4 + 1. If p is a prime number, then all the p th roots of unity except 1 are primitive p th roots. Therefore, [6] = = =. Substituting any positive integer ≥ 2 for z, this sum becomes a base z repunit. Thus a necessary (but not sufficient) condition for a repunit to be prime is that its length be ...