Search results
Results from the WOW.Com Content Network
For example, in co-transport use is made of the gradients of certain solutes to transport a target compound against its gradient, causing the dissipation of the solute gradient. It may appear that, in this example, there is no energy use, but hydrolysis of the energy provider is required to establish the gradient of the solute transported along ...
In plants, sucrose transport is distributed throughout the plant by the proton-pump where the pump, as discussed above, creates a gradient of protons so that there are many more on one side of the membrane than the other. As the protons diffuse back across the membrane, the free energy liberated by this diffusion is used to co-transport sucrose ...
Comparison of transport proteins. A symporter is an integral membrane protein that is involved in the transport of two (or more) different molecules across the cell membrane in the same direction. The symporter works in the plasma membrane and molecules are transported across the cell membrane at the same time, and is, therefore, a type of ...
Diffusion vs. Transport. In biology, an ion transporter is a transmembrane protein that moves ions (or other small molecules) across a biological membrane to accomplish many different biological functions, including cellular communication, maintaining homeostasis, energy production, etc. [1] There are different types of transporters including pumps, uniporters, antiporters, and symporters.
Mechanism of uniport transport across cell membrane. Uniporters work to transport molecules or ions by passive transport across a cell membrane down its concentration gradient. Upon binding and recognition of a specific substrate molecule on one side of the uniporter membrane, a conformational change is triggered in the transporter protein. [27]
There are three routes for water to flow in these tissues, known as the apoplastic, symplastic and transcellular pathways. Specifically, aquaporins are found in the vacuolar membrane, in addition to the plasma membrane of plants; the transcellular pathway involves transport of water across the plasma and vacuolar membranes. [41]
A membrane transport protein is a membrane protein involved in the movement of ions, small molecules, and macromolecules, such as another protein, across a biological membrane. Transport proteins are integral transmembrane proteins ; that is they exist permanently within and span the membrane across which they transport substances.
Different plant species can have different root pressures even in a similar environment; examples include up to 145 kPa in Vitis riparia but around zero in Celastrus orbiculatus. [ 13 ] The primary force that creates the capillary action movement of water upwards in plants is the adhesion between the water and the surface of the xylem conduits.