Search results
Results from the WOW.Com Content Network
The cube of a number n is denoted n 3, using a superscript 3, [a] for example 2 3 = 8. The cube operation can also be defined for any other mathematical expression, for example (x + 1) 3. The cube is also the number multiplied by its square: n 3 = n × n 2 = n × n × n. The cube function is the function x ↦ x 3 (often denoted y = x 3) that
In the case of two nested square roots, the following theorem completely solves the problem of denesting. [2]If a and c are rational numbers and c is not the square of a rational number, there are two rational numbers x and y such that + = if and only if is the square of a rational number d.
The principal cube root is the cube root with the largest real part. In the case of negative real numbers, the largest real part is shared by the two nonreal cube roots, and the principal cube root is the one with positive imaginary part. So, for negative real numbers, the real cube root is not the principal cube root. For positive real numbers ...
Thus the next p will be the old p times 10 plus x ... Find the cube root of 4192 truncated to the nearest thousandth. ... 10 0 ·1·1 0 ·7 3 + 10 1 ·3·1 1 ·7 2 ...
Graph of x 3 + 2x 2 − 7x + 4 with a simple root (multiplicity 1) at x=−4 and a root of multiplicity 2 at x=1. The graph crosses the x axis at the simple root. It is tangent to the x axis at the multiple root and does not cross it, since the multiplicity is even.
Fourth powers are also formed by multiplying a number by its cube. Furthermore, they are squares of squares. Some people refer to n 4 as n tesseracted, hypercubed, zenzizenzic, biquadrate or supercubed instead of “to the power of 4”. The sequence of fourth powers of integers, known as biquadrates or tesseractic numbers, is:
In algebraic terms, doubling a unit cube requires the construction of a line segment of length x, where x 3 = 2; in other words, x = , the cube root of two. This is because a cube of side length 1 has a volume of 1 3 = 1, and a cube of twice that volume (a volume of 2) has a side length of the cube root of 2.
If b 2 – 3ac = 0, then there is only one critical point, which is an inflection point. If b 2 – 3ac < 0, then there are no (real) critical points. In the two latter cases, that is, if b 2 – 3ac is nonpositive, the cubic function is strictly monotonic. See the figure for an example of the case Δ 0 > 0.