Search results
Results from the WOW.Com Content Network
Packaging of nucleosomes into higher order chromatin structures involves the use of loops and coils. In eukaryotes, such as humans, roughly 3.2 billion nucleotides are spread out over 23 different chromosomes (males have both an X chromosome and a Y chromosome instead of a pair of X chromosomes as seen in females). Each chromosome consists ...
Basic units of chromatin structure the structure of chromatin within a chromosome. Chromatin undergoes various structural changes during a cell cycle. Histone proteins are the basic packers and arrangers of chromatin and can be modified by various post-translational modifications to alter chromatin packing (histone modification).
The packaging of DNA into nucleosomes causes a 10 nanometer fibre which may further condense up to 30 nm fibres [33] Most of the euchromatin in interphase nuclei appears to be in the form of 30-nm fibers. [33] Chromatin structure is the more decondensed state, i.e. the 10-nm conformation allows transcription. [33] Heterochromatin vs. euchromatin
If the chromosome is a submetacentric chromosome (One arm big and the other arm small) then the centromere divides each chromosome into two regions: the smaller one, which is the p region, and the bigger one, the q region. The sister chromatids will be distributed to each daughter cell at the end of the cell division.
In biology, the chromosome scaffold is the backbone that supports the structure of the chromosomes. It is composed of a group of non-histone proteins that are essential in the structure and maintenance of eukaryotic chromosomes throughout the cell cycle. These scaffold proteins are responsible for the condensation of chromatin during mitosis. [1]
A chain of nucleosomes can be arranged in a 30 nm fiber, a compacted structure with a packing ratio of ~50 [18] and whose formation is dependent on the presence of the H1 histone. A crystal structure of a tetranucleosome has been presented and used to build up a proposed structure of the 30 nm fiber as a two-start helix. [ 34 ]
The solenoid structure can increase this to be 40 times smaller. [2] When DNA is compacted into the solenoid structure can still be transcriptionally active in certain areas. [7] It is the secondary chromatin structure that is important for this transcriptional repression as in vivo active genes are assembled in large tertiary chromatin ...
Chromosome scaffold has important role to hold the chromatin into compact chromosome. Chromosome scaffold is made of proteins including condensin, topoisomerase IIα and kinesin family member 4 (KIF4) [7] Dinoflagellates are very divergent eukaryotes in terms of how they package their DNA. Their chromosomes are packed in a liquid-crystalline ...