enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Primes in arithmetic progression - Wikipedia

    en.wikipedia.org/wiki/Primes_in_arithmetic...

    In number theory, primes in arithmetic progression are any sequence of at least three prime numbers that are consecutive terms in an arithmetic progression. An example is the sequence of primes (3, 7, 11), which is given by a n = 3 + 4 n {\displaystyle a_{n}=3+4n} for 0 ≤ n ≤ 2 {\displaystyle 0\leq n\leq 2} .

  3. Dirichlet's theorem on arithmetic progressions - Wikipedia

    en.wikipedia.org/wiki/Dirichlet's_theorem_on...

    Linnik's theorem (1944) concerns the size of the smallest prime in a given arithmetic progression. Linnik proved that the progression a + nd (as n ranges through the positive integers) contains a prime of magnitude at most cd L for absolute constants c and L. Subsequent researchers have reduced L to 5.

  4. Formula for primes - Wikipedia

    en.wikipedia.org/wiki/Formula_for_primes

    Rowland (2008) proved that this sequence contains only ones and prime numbers. However, it does not contain all the prime numbers, since the terms gcd(n + 1, a n) are always odd and so never equal to 2. 587 is the smallest prime (other than 2) not appearing in the first 10,000 outcomes that are different from 1. Nevertheless, in the same paper ...

  5. Arithmetic progression - Wikipedia

    en.wikipedia.org/wiki/Arithmetic_progression

    Proof without words of the arithmetic progression formulas using a rotated copy of the blocks. An arithmetic progression or arithmetic sequence is a sequence of numbers such that the difference from any succeeding term to its preceding term remains constant throughout the sequence. The constant difference is called common difference of that ...

  6. Prime number theorem - Wikipedia

    en.wikipedia.org/wiki/Prime_number_theorem

    This is stronger than Dirichlet's theorem on arithmetic progressions (which only states that there is an infinity of primes in each class) and can be proved using similar methods used by Newman for his proof of the prime number theorem.

  7. Green–Tao theorem - Wikipedia

    en.wikipedia.org/wiki/Green–Tao_theorem

    There has been separate computational work to find large arithmetic progressions in the primes. The Green–Tao paper states 'At the time of writing the longest known arithmetic progression of primes is of length 23, and was found in 2004 by Markus Frind, Paul Underwood, and Paul Jobling: 56211383760397 + 44546738095860 · k ; k = 0, 1 ...

  8. Sieve of Eratosthenes - Wikipedia

    en.wikipedia.org/wiki/Sieve_of_Eratosthenes

    The multiples of a given prime are generated as a sequence of numbers starting from that prime, with constant difference between them that is equal to that prime. [1] This is the sieve's key distinction from using trial division to sequentially test each candidate number for divisibility by each prime. [ 2 ]

  9. Primorial prime - Wikipedia

    en.wikipedia.org/wiki/Primorial_prime

    If either p n # + 1 or p n # − 1 is a primorial prime, it means that there are larger primes than the nth prime (if neither is a prime, that also proves the infinitude of primes, but less directly; each of these two numbers has a remainder of either p − 1 or 1 when divided by any of the first n primes, and hence all its prime factors are ...